NuSegDG: Integration of Heterogeneous Space and Gaussian Kernel for Domain-Generalized Nuclei Segmentation
- URL: http://arxiv.org/abs/2408.11787v2
- Date: Sun, 25 Aug 2024 03:49:14 GMT
- Title: NuSegDG: Integration of Heterogeneous Space and Gaussian Kernel for Domain-Generalized Nuclei Segmentation
- Authors: Zhenye Lou, Qing Xu, Zekun Jiang, Xiangjian He, Zhen Chen, Yi Wang, Chenxin Li, Maggie M. He, Wenting Duan,
- Abstract summary: We propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG.
HS-Adapter learns multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM.
GKP-Encoder generates density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts.
- Score: 9.332333405703732
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain-generalized nuclei segmentation refers to the generalizability of models to unseen domains based on knowledge learned from source domains and is challenged by various image conditions, cell types, and stain strategies. Recently, the Segment Anything Model (SAM) has made great success in universal image segmentation by interactive prompt modes (e.g., point and box). Despite its strengths, the original SAM presents limited adaptation to medical images. Moreover, SAM requires providing manual bounding box prompts for each object to produce satisfactory segmentation masks, so it is laborious in nuclei segmentation scenarios. To address these limitations, we propose a domain-generalizable framework for nuclei image segmentation, abbreviated to NuSegDG. Specifically, we first devise a Heterogeneous Space Adapter (HS-Adapter) to learn multi-dimensional feature representations of different nuclei domains by injecting a small number of trainable parameters into the image encoder of SAM. To alleviate the labor-intensive requirement of manual prompts, we introduce a Gaussian-Kernel Prompt Encoder (GKP-Encoder) to generate density maps driven by a single point, which guides segmentation predictions by mixing position prompts and semantic prompts. Furthermore, we present a Two-Stage Mask Decoder (TSM-Decoder) to effectively convert semantic masks to instance maps without the manual demand for morphological shape refinement. Based on our experimental evaluations, the proposed NuSegDG demonstrates state-of-the-art performance in nuclei instance segmentation, exhibiting superior domain generalization capabilities. The source code is available at https://github.com/xq141839/NuSegDG.
Related papers
- Prompting Segment Anything Model with Domain-Adaptive Prototype for Generalizable Medical Image Segmentation [49.5901368256326]
We propose a novel Domain-Adaptive Prompt framework for fine-tuning the Segment Anything Model (termed as DAPSAM) in segmenting medical images.
Our DAPSAM achieves state-of-the-art performance on two medical image segmentation tasks with different modalities.
arXiv Detail & Related papers (2024-09-19T07:28:33Z) - Pathological Primitive Segmentation Based on Visual Foundation Model with Zero-Shot Mask Generation [3.5177988631063486]
We present a novel approach that adapts pre-trained natural image encoders of SAM for detection-based region proposals.
The entire base framework, SAM, requires no additional training or fine-tuning but could produce an end-to-end result for two fundamental segmentation tasks in pathology.
arXiv Detail & Related papers (2024-04-12T16:29:49Z) - UN-SAM: Universal Prompt-Free Segmentation for Generalized Nuclei Images [47.59627416801523]
In digital pathology, precise nuclei segmentation is pivotal yet challenged by the diversity of tissue types, staining protocols, and imaging conditions.
We propose the Universal prompt-free SAM framework for Nuclei segmentation (UN-SAM)
UN-SAM with exceptional performance surpasses state-of-the-arts in nuclei instance and semantic segmentation, especially the generalization capability in zero-shot scenarios.
arXiv Detail & Related papers (2024-02-26T15:35:18Z) - Unleashing the Power of Prompt-driven Nucleus Instance Segmentation [12.827503504028629]
Segment Anything Model (SAM) has earned huge attention in medical image segmentation.
We present a novel prompt-driven framework that consists of a nucleus prompter and SAM for automatic nucleus instance segmentation.
Our proposed method sets a new state-of-the-art performance on three challenging benchmarks.
arXiv Detail & Related papers (2023-11-27T15:46:47Z) - Segment Everything Everywhere All at Once [124.90835636901096]
We present SEEM, a promptable and interactive model for segmenting everything everywhere all at once in an image.
We propose a novel decoding mechanism that enables diverse prompting for all types of segmentation tasks.
We conduct a comprehensive empirical study to validate the effectiveness of SEEM across diverse segmentation tasks.
arXiv Detail & Related papers (2023-04-13T17:59:40Z) - MI-SegNet: Mutual Information-Based US Segmentation for Unseen Domain
Generalization [36.71630929695019]
Generalization capabilities of learning-based medical image segmentation across domains are currently limited by the performance degradation caused by the domain shift.
We propose MI-SegNet, a novel mutual information (MI) based framework to explicitly disentangle the anatomical and domain feature representations.
We validate the generalizability of the proposed domain-independent segmentation approach on several datasets with varying parameters and machines.
arXiv Detail & Related papers (2023-03-22T15:30:44Z) - Domain Adaptive Nuclei Instance Segmentation and Classification via
Category-aware Feature Alignment and Pseudo-labelling [65.40672505658213]
We propose a novel deep neural network, namely Category-Aware feature alignment and Pseudo-Labelling Network (CAPL-Net) for UDA nuclei instance segmentation and classification.
Our approach outperforms state-of-the-art UDA methods with a remarkable margin.
arXiv Detail & Related papers (2022-07-04T07:05:06Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
We propose a two-stream graph convolutional network (i.e., TSGCN) to handle inter-view confusion between different raw attributes.
Our TSGCN significantly outperforms state-of-the-art methods in 3D tooth (surface) segmentation.
arXiv Detail & Related papers (2022-04-19T10:41:09Z) - Instance Segmentation of Unlabeled Modalities via Cyclic Segmentation
GAN [27.936725483892076]
We propose a novel Cyclic Generative Adrial Network (CySGAN) that conducts image translation and instance segmentation jointly.
We benchmark our approach on the task of 3D neuronal nuclei segmentation with annotated electron microscopy (EM) images and unlabeled expansion microscopy (ExM) data.
arXiv Detail & Related papers (2022-04-06T20:46:39Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation method (TRFS)
Our model consists of two modules: Global Enhancement Module (GEM) and Local Enhancement Module (LEM)
arXiv Detail & Related papers (2021-08-04T20:09:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.