論文の概要: MGH Radiology Llama: A Llama 3 70B Model for Radiology
- arxiv url: http://arxiv.org/abs/2408.11848v2
- Date: Mon, 16 Dec 2024 18:25:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-17 13:52:45.981584
- Title: MGH Radiology Llama: A Llama 3 70B Model for Radiology
- Title(参考訳): MGH Radiology Llama: A Llama 370B Model for Radiology
- Authors: Yucheng Shi, Peng Shu, Zhengliang Liu, Zihao Wu, Quanzheng Li, Tianming Liu, Ninghao Liu, Xiang Li,
- Abstract要約: 本稿では,高度な放射線学に焦点を当てた大規模言語モデルMGH Radiology Llamaを提案する。
Llama 3 70Bモデルを使用して開発され、Radiology-GPTやRadiology-Llama2といった従来のドメイン固有モデルをベースにしている。
従来の指標とGPT-4に基づく評価の両方を取り入れた評価では,汎用LLMよりも高い性能を示す。
- 参考スコア(独自算出の注目度): 50.42811030970618
- License:
- Abstract: In recent years, the field of radiology has increasingly harnessed the power of artificial intelligence (AI) to enhance diagnostic accuracy, streamline workflows, and improve patient care. Large language models (LLMs) have emerged as particularly promising tools, offering significant potential in assisting radiologists with report generation, clinical decision support, and patient communication. This paper presents an advanced radiology-focused large language model: MGH Radiology Llama. It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2. Leveraging a unique and comprehensive dataset from Massachusetts General Hospital, comprising over 6.5 million de-identified medical reports across various imaging modalities, the model demonstrates significant improvements in generating accurate and clinically relevant radiology impressions given the corresponding findings. Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
- Abstract(参考訳): 近年、放射線学の分野は、診断精度の向上、ワークフローの効率化、患者のケア改善に人工知能(AI)の力を活用している。
大規模言語モデル(LLM)は特に有望なツールとして現れており、報告生成、臨床決定支援、患者とのコミュニケーションにおいて、放射線技師を支援する大きな可能性を秘めている。
本稿では,高度な放射線学に焦点を当てた大規模言語モデルMGH Radiology Llamaを提案する。
Llama 3 70Bモデルを使用して開発され、Radiology-GPTやRadiology-Llama2といった従来のドメイン固有モデルをベースにしている。
マサチューセッツ総合病院から独自で包括的なデータセットを入手し、様々な画像モダリティにわたる650万件以上の非特定医療報告を収集し、このモデルは、対応する結果から、正確で臨床的に関係のある放射線学の印象を生成する上で、大幅な改善を示す。
従来の指標とGPT-4に基づく評価の両方を取り入れた評価では,汎用LLMよりも高い性能を示す。
関連論文リスト
- Summarizing Radiology Reports Findings into Impressions [1.8964110318127383]
本稿では,最新の放射線学報告による要約性能のモデルを提案する。
また、モデル限界と放射線学知識の獲得について分析する。
我々の最高の性能モデルは、58.75/100 ROUGE-L F1で調整されたBERT-to-BERTエンコーダデコーダであった。
論文 参考訳(メタデータ) (2024-05-10T20:29:25Z) - Large Model driven Radiology Report Generation with Clinical Quality
Reinforcement Learning [16.849933628738277]
放射線学報告生成 (RRG) は, 放射線技師の作業量削減の可能性から注目されている。
本稿では,新しいRRG法である textbfLM-RRG について紹介する。
MIMIC-CXRおよびIU-Xrayデータセットを用いた実験により,本手法が技術状況よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-11T13:47:11Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuerは、一般化可能な表現を学習する自動放射線学レポート生成のための調整されたモデルである。
本研究で利用した臨床データセットは,textbf332,673の顕著な総計を含む。
ChatRadio-Valuerは、最先端のモデル、特にChatGPT(GPT-3.5-Turbo)やGPT-4などより一貫して優れている。
論文 参考訳(メタデータ) (2023-10-08T17:23:17Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
本稿では,ラジオロジーに特化した大規模言語モデルであるRadiology-Llama2を紹介する。
MIMIC-CXRとOpenIデータセットのROUGEメトリクスを用いた定量的評価は、Radiology-Llama2が最先端のパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2023-08-29T17:44:28Z) - Evaluating Large Language Models for Radiology Natural Language
Processing [68.98847776913381]
大規模言語モデル(LLM)の台頭は、自然言語処理(NLP)分野における重要な転換点となっている。
本研究は, 放射線学報告の解釈において, 30 個の LLM を批判的に評価することにより, このギャップを埋めることを目指している。
論文 参考訳(メタデータ) (2023-07-25T17:57:18Z) - Radiology-GPT: A Large Language Model for Radiology [74.07944784968372]
本稿では,ラジオロジーのための大規模言語モデルであるRadiology-GPTを紹介する。
StableLM、Dolly、LLaMAといった一般的な言語モデルと比較して、優れたパフォーマンスを示している。
放射線診断、研究、通信において大きな汎用性を示す。
論文 参考訳(メタデータ) (2023-06-14T17:57:24Z) - Medical Image Captioning via Generative Pretrained Transformers [57.308920993032274]
我々は、Show-Attend-Tell と GPT-3 という2つの言語モデルを組み合わせて、包括的で記述的な放射線学記録を生成する。
提案モデルは、Open-I、MIMIC-CXR、汎用MS-COCOの2つの医療データセットで検証される。
論文 参考訳(メタデータ) (2022-09-28T10:27:10Z) - Federated Learning Enables Big Data for Rare Cancer Boundary Detection [98.5549882883963]
6大陸にわたる71の医療機関のデータを含む,これまでで最大のフェデレーテッドML研究の結果を報告する。
グリオ芽腫の稀な疾患に対する腫瘍境界自動検出装置を作製した。
当科では, 外科的に標的とした腫瘍の悪性度を高めるために, 33%の改善率を示し, 腫瘍全体に対する23%の改善率を示した。
論文 参考訳(メタデータ) (2022-04-22T17:27:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。