論文の概要: PyMarian: Fast Neural Machine Translation and Evaluation in Python
- arxiv url: http://arxiv.org/abs/2408.11853v1
- Date: Thu, 15 Aug 2024 01:41:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-25 13:51:32.177509
- Title: PyMarian: Fast Neural Machine Translation and Evaluation in Python
- Title(参考訳): PyMarian: Pythonの高速ニューラルネットワーク翻訳と評価
- Authors: Thamme Gowda, Roman Grundkiewicz, Elijah Rippeth, Matt Post, Marcin Junczys-Dowmunt,
- Abstract要約: シーケンス・ツー・シーケンス・モデルのための C++ ベースのトレーニングおよび推論ツールキットである Marian NMT に Python インタフェースを記述した。
このインターフェースにより、Marianでトレーニングされたモデルが、Pythonで利用可能なリッチで幅広いツールに接続できるようになる。
- 参考スコア(独自算出の注目度): 11.291502854418098
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The deep learning language of choice these days is Python; measured by factors such as available libraries and technical support, it is hard to beat. At the same time, software written in lower-level programming languages like C++ retain advantages in speed. We describe a Python interface to Marian NMT, a C++-based training and inference toolkit for sequence-to-sequence models, focusing on machine translation. This interface enables models trained with Marian to be connected to the rich, wide range of tools available in Python. A highlight of the interface is the ability to compute state-of-the-art COMET metrics from Python but using Marian's inference engine, with a speedup factor of up to 7.8$\times$ the existing implementations. We also briefly spotlight a number of other integrations, including Jupyter notebooks, connection with prebuilt models, and a web app interface provided with the package. PyMarian is available in PyPI via $\texttt{pip install pymarian}$.
- Abstract(参考訳): 最近のディープラーニング言語はPythonで、利用可能なライブラリや技術的サポートなどによって測定されるため、打ち勝つのは難しい。
同時に、C++のような低レベルのプログラミング言語で書かれたソフトウェアは、速度の利点を保っている。
C++ベースのシーケンス間モデルのためのトレーニングおよび推論ツールキットであるMarian NMTにPythonインタフェースを記述し、機械翻訳に焦点を当てた。
このインターフェースにより、Marianでトレーニングされたモデルが、Pythonで利用可能なリッチで幅広いツールに接続できるようになる。
インターフェースのハイライトは、Pythonから最先端のCOMETメトリクスを計算できるが、Marianの推論エンジンを使用しており、最大7.8$\times$のスピードアップ係数を持つ。
また、Jupyterノートブック、ビルド済みモデルとの接続、パッケージを備えたWebアプリインターフェースなど、他の多くの統合についても簡単に注目しています。
PyMarianは、$\texttt{pip install pymarian}$を介してPyPIで利用可能である。
関連論文リスト
- depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers [92.13613958373628]
textttdepyfは、PyTorchコンパイラの内部動作を復号化するためのツールである。
textttdepyfは、PyTorchが生成したバイトコードを等価なソースコードに逆コンパイルする。
論文 参考訳(メタデータ) (2024-03-14T16:17:14Z) - pyvene: A Library for Understanding and Improving PyTorch Models via
Interventions [79.72930339711478]
$textbfpyvene$は、さまざまなPyTorchモジュールに対するカスタマイズ可能な介入をサポートするオープンソースライブラリである。
私たちは、$textbfpyvene$が、ニューラルモデルへの介入を実行し、他のモデルとインターバルされたモデルを共有するための統一されたフレームワークを提供する方法を示します。
論文 参考訳(メタデータ) (2024-03-12T16:46:54Z) - PyPOTS: A Python Toolbox for Data Mining on Partially-Observed Time
Series [0.0]
PyPOTSは、部分的に保存された時系列のデータマイニングと分析に特化した、オープンソースのPythonライブラリである。
これは、計算、分類、クラスタリング、予測の4つのタスクに分類される多様なアルゴリズムに容易にアクセスできる。
論文 参考訳(メタデータ) (2023-05-30T07:57:05Z) - PyGOD: A Python Library for Graph Outlier Detection [56.33769221859135]
PyGODは、グラフデータの外れ値を検出するオープンソースライブラリである。
外れ値検出のための主要なグラフベースのメソッドを幅広くサポートしています。
PyGODはBSD 2-Clauseライセンスの下でhttps://pygod.orgとPython Package Index (PyPI)でリリースされている。
論文 参考訳(メタデータ) (2022-04-26T06:15:21Z) - PyHHMM: A Python Library for Heterogeneous Hidden Markov Models [63.01207205641885]
PyHHMM は Heterogeneous-Hidden Markov Models (HHMM) のオブジェクト指向Python実装である。
PyHHMMは、異種観測モデル、データ推論の欠如、異なるモデルの順序選択基準、半教師付きトレーニングなど、同様のフレームワークではサポートされない機能を強調している。
PyHHMMは、numpy、scipy、scikit-learn、およびシーボーンPythonパッケージに依存しており、Apache-2.0ライセンスの下で配布されている。
論文 参考訳(メタデータ) (2022-01-12T07:32:36Z) - OMB-Py: Python Micro-Benchmarks for Evaluating Performance of MPI
Libraries on HPC Systems [1.066106854070245]
OMB-Pyは並列Pythonアプリケーションのための最初の通信ベンチマークスイートである。
OMB-Pyは様々なポイント・ツー・ポイントと集合的な通信ベンチマークテストから構成される。
逐次実行と比較して,224CPUコア上での最大106倍の高速化を報告した。
論文 参考訳(メタデータ) (2021-10-20T16:59:14Z) - Extending Python for Quantum-Classical Computing via Quantum
Just-in-Time Compilation [78.8942067357231]
Pythonは、その柔軟性、ユーザビリティ、可読性、開発者の生産性を重視することで有名な人気のあるプログラミング言語です。
量子ジャスト・イン・タイム・コンパイルのための堅牢なC++インフラストラクチャを通じて、異種量子古典計算を可能にするPythonの言語拡張を提案する。
論文 参考訳(メタデータ) (2021-05-10T21:11:21Z) - Using Python for Model Inference in Deep Learning [0.6027358520885614]
pythonで推論を実行しながら、パフォーマンスとパッケージングの制約を満たす方法を示します。
複数のPythonインタプリタを単一のプロセスで使用して,スケーラブルな推論を実現する方法を提案する。
論文 参考訳(メタデータ) (2021-04-01T04:48:52Z) - Python Workflows on HPC Systems [2.1485350418225244]
計算集約型機械学習とデータ分析手法の最近の成功と広範な応用により、HPCシステムにおけるPythonプログラミング言語の使用が促進されている。
Pythonはユーザに対して多くの利点を提供しているが、マルチユーザ環境や並列プログラミングに重点を置いて設計されていない。
本稿では,HPCクラスタ上でのPythonの使用によって引き起こされる重要な問題を分析し,適切な回避策をスケッチする。
論文 参考訳(メタデータ) (2020-12-01T09:51:12Z) - OPFython: A Python-Inspired Optimum-Path Forest Classifier [68.8204255655161]
本稿では,OPFythonと表記されるPythonベースのOptimum-Path Forestフレームワークを提案する。
OPFythonはPythonベースのライブラリなので、C言語よりもフレンドリーな環境とプロトタイピングの作業スペースを提供する。
論文 参考訳(メタデータ) (2020-01-28T15:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。