論文の概要: Gradient Reduction Convolutional Neural Network Policy for Financial Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2408.11859v1
- Date: Fri, 16 Aug 2024 11:39:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 18:26:17.305413
- Title: Gradient Reduction Convolutional Neural Network Policy for Financial Deep Reinforcement Learning
- Title(参考訳): 金融深層強化学習のためのグラディエント還元畳み込みニューラルネットワーク政策
- Authors: Sina Montazeri, Haseebullah Jumakhan, Sonia Abrasiabian, Amir Mirzaeinia,
- Abstract要約: 本稿では、CNNモデルの予測性能と財務データの堅牢性を改善するための2つの重要な拡張を紹介する。
まず、入力段階で正規化層を統合し、一貫した機能スケーリングを保証する。
第二に、グラディエント・リダクション・アーキテクチャ(Gradient Reduction Architecture)を採用しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Building on our prior explorations of convolutional neural networks (CNNs) for financial data processing, this paper introduces two significant enhancements to refine our CNN model's predictive performance and robustness for financial tabular data. Firstly, we integrate a normalization layer at the input stage to ensure consistent feature scaling, addressing the issue of disparate feature magnitudes that can skew the learning process. This modification is hypothesized to aid in stabilizing the training dynamics and improving the model's generalization across diverse financial datasets. Secondly, we employ a Gradient Reduction Architecture, where earlier layers are wider and subsequent layers are progressively narrower. This enhancement is designed to enable the model to capture more complex and subtle patterns within the data, a crucial factor in accurately predicting financial outcomes. These advancements directly respond to the limitations identified in previous studies, where simpler models struggled with the complexity and variability inherent in financial applications. Initial tests confirm that these changes improve accuracy and model stability, suggesting that deeper and more nuanced network architectures can significantly benefit financial predictive tasks. This paper details the implementation of these enhancements and evaluates their impact on the model's performance in a controlled experimental setting.
- Abstract(参考訳): 本稿では、金融データ処理のための畳み込みニューラルネットワーク(CNN)の以前の探索に基づいて、CNNモデルの予測性能と財務表データの堅牢性を改善するための2つの重要な拡張を紹介する。
まず、入力段階で正規化層を統合し、一貫した機能のスケーリングを保証する。
この修正は、トレーニングのダイナミクスを安定化し、さまざまな財務データセットにわたるモデルの一般化を改善するのに役立つと仮定されている。
第二に、グラディエント・リダクション・アーキテクチャ(Gradient Reduction Architecture)を採用しています。
この強化は、モデルがデータ内のより複雑で微妙なパターンをキャプチャできるようにするように設計されている。
これらの進歩は、金融アプリケーションに固有の複雑さと変動性に、より単純なモデルが苦戦する以前の研究で特定された制限に、直接反応する。
最初のテストでは、これらの変更によって精度とモデルの安定性が向上し、より深く、よりニュアンスの高いネットワークアーキテクチャが、金銭的な予測タスクに多大な恩恵をもたらすことが示唆された。
本稿では、これらの拡張の実装について詳述し、制御された実験環境でのモデルの性能への影響を評価する。
関連論文リスト
- Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
より優れた重量空間を実現するために、新しいデータモデル共設計視点を導入する。
具体的には、提案したVPNフレームワークでニューラルネットワークのスパーシフィケーションをアップグレードするために、カスタマイズされたVisual Promptが実装されている。
論文 参考訳(メタデータ) (2023-12-03T13:50:24Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
ロングテールモデルは高品質なデータに対する強い需要を示している。
データ中心のアプローチは、モデルパフォーマンスを改善するために、データの量と品質の両方を強化することを目的としています。
現在、情報強化の有効性を説明するメカニズムに関する研究が不足している。
論文 参考訳(メタデータ) (2023-11-03T06:34:37Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
本研究では,拡張LFTSformerと呼ばれる長期金融時系列の予測モデルを提案する。
このモデルは、いくつかの重要なイノベーションを通じて、自分自身を区別する。
さまざまなベンチマークストックマーケットデータセットに関するシステマティックな実験は、強化LFTSformerが従来の機械学習モデルより優れていることを示している。
論文 参考訳(メタデータ) (2023-10-03T08:37:21Z) - Deep learning models for price forecasting of financial time series: A
review of recent advancements: 2020-2022 [6.05458608266581]
ディープラーニングモデルは、価格予測タスクのための従来の統計モデルと機械学習モデルを置き換えるものだ。
このレビューは、ディープラーニングに基づく予測モデルについて深く掘り下げ、モデルアーキテクチャ、実践的応用、およびそれぞれの利点と欠点に関する情報を提示する。
この貢献には、価格予測のための複雑な構造を持つディープラーニングモデルの有効性を検討するなど、将来の研究に向けた潜在的方向性も含まれている。
論文 参考訳(メタデータ) (2023-04-21T03:46:09Z) - DA-VEGAN: Differentiably Augmenting VAE-GAN for microstructure
reconstruction from extremely small data sets [110.60233593474796]
DA-VEGANは2つの中心的なイノベーションを持つモデルである。
$beta$-variational autoencoderはハイブリッドGANアーキテクチャに組み込まれている。
このアーキテクチャに特化して、独自の差別化可能なデータ拡張スキームが開発されている。
論文 参考訳(メタデータ) (2023-02-17T08:49:09Z) - The Importance of the Current Input in Sequence Modeling [0.0]
入力と出力の間に直接接続を加えるという非常に単純なアイデアが、繰り返しモジュールをスキップすることで、予測精度が向上することを示す。
異なる問題に対する実験により、再帰的なネットワークへのこのような接続が常に改善されることが示されている。
論文 参考訳(メタデータ) (2021-12-22T10:29:20Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z) - On Robustness and Transferability of Convolutional Neural Networks [147.71743081671508]
現代の深層畳み込みネットワーク(CNN)は、分散シフトの下で一般化しないとしてしばしば批判される。
現代画像分類CNNにおける分布外と転送性能の相互作用を初めて検討した。
トレーニングセットとモデルサイズを増大させることで、分散シフトロバスト性が著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-16T18:39:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。