Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design
- URL: http://arxiv.org/abs/2408.11866v1
- Date: Sun, 18 Aug 2024 11:37:19 GMT
- Title: Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design
- Authors: Sakhinana Sagar Srinivas, Venkataramana Runkana,
- Abstract summary: Our study explores the use of knowledge-augmented prompting of large language models (LLMs) for the zero-shot text-conditional de novo molecular generation task.
Our framework proves effective, outperforming state-of-the-art (SOTA) baseline models on benchmark datasets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Molecule design is a multifaceted approach that leverages computational methods and experiments to optimize molecular properties, fast-tracking new drug discoveries, innovative material development, and more efficient chemical processes. Recently, text-based molecule design has emerged, inspired by next-generation AI tasks analogous to foundational vision-language models. Our study explores the use of knowledge-augmented prompting of large language models (LLMs) for the zero-shot text-conditional de novo molecular generation task. Our approach uses task-specific instructions and a few demonstrations to address distributional shift challenges when constructing augmented prompts for querying LLMs to generate molecules consistent with technical descriptions. Our framework proves effective, outperforming state-of-the-art (SOTA) baseline models on benchmark datasets.
Related papers
- nach0-pc: Multi-task Language Model with Molecular Point Cloud Encoder [8.125243669908318]
nach0-pc is a model combining domain-specific encoder and textual representation to handle spatial arrangement of atoms effectively.
We introduce a novel pre-training scheme for molecular point clouds to distillate the knowledge from spatial molecular structures datasets.
arXiv Detail & Related papers (2024-10-11T20:30:44Z) - Smirk: An Atomically Complete Tokenizer for Molecular Foundation Models [0.0]
We systematically evaluate thirteen chemistry-specific tokenizers for their coverage of the SMILES language.
We introduce two new tokenizers, i>smirk/i> and i>smirk-gpe/i>, which can represent the entirety of the OpenSMILES specification.
arXiv Detail & Related papers (2024-09-19T02:36:04Z) - Many-Shot In-Context Learning for Molecular Inverse Design [56.65345962071059]
Large Language Models (LLMs) have demonstrated great performance in few-shot In-Context Learning (ICL)
We develop a new semi-supervised learning method that overcomes the lack of experimental data available for many-shot ICL.
As we show, the new method greatly improves upon existing ICL methods for molecular design while being accessible and easy to use for scientists.
arXiv Detail & Related papers (2024-07-26T21:10:50Z) - Instruction Multi-Constraint Molecular Generation Using a Teacher-Student Large Language Model [49.64512917330373]
We introduce a multi-constraint molecular generation large language model, TSMMG, akin to a student.
To train TSMMG, we construct a large set of text-molecule pairs by extracting molecular knowledge from these 'teachers'
We experimentally show that TSMMG remarkably performs in generating molecules meeting complex, natural language-described property requirements.
arXiv Detail & Related papers (2024-03-20T02:15:55Z) - Bridging Text and Molecule: A Survey on Multimodal Frameworks for Molecule [16.641797535842752]
In this paper, we present the first systematic survey on multimodal frameworks for molecules research.
We begin with the development of molecular deep learning and point out the necessity to involve textual modality.
Furthermore, we delves into the utilization of large language models and prompting techniques for molecular tasks and present significant applications in drug discovery.
arXiv Detail & Related papers (2024-03-07T03:03:13Z) - Empowering Molecule Discovery for Molecule-Caption Translation with Large Language Models: A ChatGPT Perspective [53.300288393173204]
Large Language Models (LLMs) have shown remarkable performance in various cross-modal tasks.
In this work, we propose an In-context Few-Shot Molecule Learning paradigm for molecule-caption translation.
We evaluate the effectiveness of MolReGPT on molecule-caption translation, including molecule understanding and text-based molecule generation.
arXiv Detail & Related papers (2023-06-11T08:16:25Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
We propose MNCE-RL, a graph convolutional policy network for molecular optimization.
We extend the original neighborhood-controlled embedding grammars to make them applicable to molecular graph generation.
We show that our approach achieves state-of-the-art performance in a diverse range of molecular optimization tasks.
arXiv Detail & Related papers (2020-11-14T05:42:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.