Smirk: An Atomically Complete Tokenizer for Molecular Foundation Models
- URL: http://arxiv.org/abs/2409.15370v1
- Date: Thu, 19 Sep 2024 02:36:04 GMT
- Title: Smirk: An Atomically Complete Tokenizer for Molecular Foundation Models
- Authors: Alexius Wadell, Anoushka Bhutani, Venkatasubramanian Viswanathan,
- Abstract summary: We systematically evaluate thirteen chemistry-specific tokenizers for their coverage of the SMILES language.
We introduce two new tokenizers, i>smirk/i> and i>smirk-gpe/i>, which can represent the entirety of the OpenSMILES specification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Molecular Foundation Models are emerging as powerful tools for accelerating molecular design, material science, and cheminformatics, leveraging transformer architectures to speed up the discovery of new materials and drugs while reducing the computational cost of traditional ab initio methods. However, current models are constrained by closed-vocabulary tokenizers that fail to capture the full diversity of molecular structures. In this work, we systematically evaluate thirteen chemistry-specific tokenizers for their coverage of the SMILES language, uncovering substantial gaps. Using N-gram language models, we accessed the impact of tokenizer choice on model performance and quantified the information loss of unknown tokens. We introduce two new tokenizers, <i>smirk</i> and <i>smirk-gpe</i>, which can represent the entirety of the OpenSMILES specification while avoiding the pitfalls of existing tokenizers. Our work highlights the importance of open-vocabulary modeling for molecular foundation models and the need for chemically diverse benchmarks for cheminformatics.
Related papers
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Crossing New Frontiers: Knowledge-Augmented Large Language Model Prompting for Zero-Shot Text-Based De Novo Molecule Design [0.0]
Our study explores the use of knowledge-augmented prompting of large language models (LLMs) for the zero-shot text-conditional de novo molecular generation task.
Our framework proves effective, outperforming state-of-the-art (SOTA) baseline models on benchmark datasets.
arXiv Detail & Related papers (2024-08-18T11:37:19Z) - Token-Mol 1.0: Tokenized drug design with large language model [10.258299488278514]
Token-Mol is a token-only 3D drug design model that encodes all molecular information, including 2D and 3D structures, as well as molecular property data, into tokens.
It is built on the transformer decoder architecture and trained using random causal masking techniques.
Compared to existing molecular pre-trained models, Token-Mol exhibits superior proficiency in handling a wider range of downstream tasks.
arXiv Detail & Related papers (2024-07-10T07:22:15Z) - MolTRES: Improving Chemical Language Representation Learning for Molecular Property Prediction [14.353313239109337]
MolTRES is a novel chemical language representation learning framework.
It incorporates generator-discriminator training, allowing the model to learn from more challenging examples.
Our model outperforms existing state-of-the-art models on popular molecular property prediction tasks.
arXiv Detail & Related papers (2024-07-09T01:14:28Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Learning Invariant Molecular Representation in Latent Discrete Space [52.13724532622099]
We propose a new framework for learning molecular representations that exhibit invariance and robustness against distribution shifts.
Our model achieves stronger generalization against state-of-the-art baselines in the presence of various distribution shifts.
arXiv Detail & Related papers (2023-10-22T04:06:44Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
We develop molecular embeddings that encode complex molecular characteristics to improve the performance of few-shot molecular property prediction.
Our approach leverages large amounts of synthetic data, namely the results of molecular docking calculations.
On multiple molecular property prediction benchmarks, training from the embedding space substantially improves Multi-Task, MAML, and Prototypical Network few-shot learning performance.
arXiv Detail & Related papers (2023-02-04T01:32:40Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.