ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA
- URL: http://arxiv.org/abs/2408.11869v3
- Date: Tue, 14 Jan 2025 04:25:23 GMT
- Title: ELDER: Enhancing Lifelong Model Editing with Mixture-of-LoRA
- Authors: Jiaang Li, Quan Wang, Zhongnan Wang, Yongdong Zhang, Zhendong Mao,
- Abstract summary: Large language models (LLMs) require model editing to efficiently update specific knowledge within them and avoid factual errors.
Previous approaches manage sequential edits by freezing original parameters and discretely allocating new parameters for each knowledge update.
We propose ELDER, a novel approach to create a continuous association between data and adapters.
- Score: 55.697627106315004
- License:
- Abstract: Large language models (LLMs) require model editing to efficiently update specific knowledge within them and avoid factual errors. Most model editing methods are solely designed for single-time use and result in a significant forgetting effect in lifelong editing scenarios, where sequential edits are conducted over time. Previous approaches manage sequential edits by freezing original parameters and discretely allocating new parameters for each knowledge update. However, these methods lack robustness to minor input variations due to the discrete mapping between data and parameters. To overcome this challenge, we propose ELDER, a novel approach to create a continuous association between data and adapters. ELDER integrates multiple LoRAs through a router network and is trained to establish a smooth data-adapter association, thereby enhancing the edit robustness and generalization of semantically equivalent inputs. To ensure inputs containing the same knowledge will be processed by the same LoRAs, we design a novel loss to guide the model link LoRA allocations with edit knowledge. Furthermore, we propose a deferral mechanism to retain the original LLM capabilities post-edit. Extensive experiments on GPT-2 XL and LLaMA2-7B demonstrate that ELDER effectively edits models in the lifelong setting, outperforming eight baselines while exhibiting strong scalability and preserving LLMs' general abilities on downstream tasks. Our code is available at https://github.com/JiaangL/ELDER.
Related papers
- Reinforced Lifelong Editing for Language Models [12.101856766731574]
Large language models (LLMs) acquire information from pre-training corpora, but their stored knowledge can become inaccurate or outdated over time.
Model editing addresses this challenge by modifying model parameters without retraining, and prevalent approaches leverage hypernetworks to generate these parameter updates.
We propose RLEdit, an RL-based editing method that captures changes at the full knowledge sequence level and generates appropriate parameter updates.
arXiv Detail & Related papers (2025-02-09T03:37:06Z) - Neuron-Level Sequential Editing for Large Language Models [19.324852774144752]
We introduce textbfNeuron-level textbfSequential textbfEditing (NSE) for supporting sequential model editing.
Specifically, we optimize the target layer's hidden states using the model's original weights to prevent model failure.
Our experiments demonstrate that NSE significantly outperforms current modifying parameters model editing methods.
arXiv Detail & Related papers (2024-10-05T05:52:22Z) - Better Call SAUL: Fluent and Consistent Language Model Editing with Generation Regularization [48.07144492109635]
Large language models need to be updated regularly.
Model editing is challenging as it might also affect knowledge that is unrelated to the new data.
We propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization.
arXiv Detail & Related papers (2024-10-03T12:28:13Z) - DAFNet: Dynamic Auxiliary Fusion for Sequential Model Editing in Large Language Models [32.598670876662375]
A Dynamic Auxiliary Fusion Network (DAFNet) is designed to enhance the semantic interaction among the factual knowledge within the entire sequence.
DAFNet significantly outperforms strong baselines in single-turn and sequential editing.
arXiv Detail & Related papers (2024-05-31T02:56:49Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
We propose EREN (Edit models by REading Notes) to improve the scalability and robustness of LLM editing.
Unlike existing techniques, it can integrate knowledge from multiple edits, and correctly respond to syntactically similar but semantically unrelated inputs.
arXiv Detail & Related papers (2024-03-26T06:57:23Z) - Learning to Edit: Aligning LLMs with Knowledge Editing [101.96620267293731]
We propose a Learning to Edit (LTE) framework, focusing on teaching large language models to apply updated knowledge into input questions.
LTE features a two-phase process: (i) the Alignment Phase, which fine-tunes LLMs on a meticulously curated parallel dataset to make reliable, in-scope edits.
We demonstrate LTE's superiority in knowledge editing performance, robustness in both batch and sequential editing, minimal interference on general tasks, and rapid editing speeds.
arXiv Detail & Related papers (2024-02-19T07:45:17Z) - The Butterfly Effect of Model Editing: Few Edits Can Trigger Large Language Models Collapse [58.0132400208411]
Even a single edit can trigger model collapse, manifesting as significant performance degradation in various benchmark tasks.
benchmarking Large Language Models after each edit is impractically time-consuming and resource-intensive.
We have utilized GPT-3.5 to develop a new dataset, HardEdit, based on hard cases.
arXiv Detail & Related papers (2024-02-15T01:50:38Z) - SWEA: Updating Factual Knowledge in Large Language Models via Subject Word Embedding Altering [17.20346072074533]
Recent model editing is a promising technique for efficiently updating a small amount of knowledge of large language models.
We propose a detachable and expandable Subject Word Embedding Altering (SWEA) framework, which finds the editing embeddings through token-level matching.
We demonstrate the overall state-of-the-art (SOTA) performance of SWEA$oplus$OS on the CounterFact and zsRE datasets.
arXiv Detail & Related papers (2024-01-31T13:08:45Z) - MELO: Enhancing Model Editing with Neuron-Indexed Dynamic LoRA [34.21194537887934]
We propose a plug-in Model Editing method based on neuron-indexed dynamic LoRA (MELO)
Our proposed MELO achieves state-of-the-art editing performance on three sequential editing tasks.
arXiv Detail & Related papers (2023-12-19T02:11:01Z) - Memory-Based Model Editing at Scale [102.28475739907498]
Existing model editors struggle to accurately model an edit's intended scope.
We propose Semi-Parametric Editing with a Retrieval-Augmented Counterfactual Model (SERAC)
SERAC stores edits in an explicit memory and learns to reason over them to modulate the base model's predictions as needed.
arXiv Detail & Related papers (2022-06-13T23:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.