Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning
- URL: http://arxiv.org/abs/2409.07446v1
- Date: Wed, 11 Sep 2024 17:52:00 GMT
- Title: Adaptive Adapter Routing for Long-Tailed Class-Incremental Learning
- Authors: Zhi-Hong Qi, Da-Wei Zhou, Yiran Yao, Han-Jia Ye, De-Chuan Zhan,
- Abstract summary: New data exhibits a long-tailed distribution, such as e-commerce platform reviews.
This necessitates continuous model learning imbalanced data without forgetting.
We introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL.
- Score: 55.384428765798496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In our ever-evolving world, new data exhibits a long-tailed distribution, such as e-commerce platform reviews. This necessitates continuous model learning imbalanced data without forgetting, addressing the challenge of long-tailed class-incremental learning (LTCIL). Existing methods often rely on retraining linear classifiers with former data, which is impractical in real-world settings. In this paper, we harness the potent representation capabilities of pre-trained models and introduce AdaPtive Adapter RouTing (APART) as an exemplar-free solution for LTCIL. To counteract forgetting, we train inserted adapters with frozen pre-trained weights for deeper adaptation and maintain a pool of adapters for selection during sequential model updates. Additionally, we present an auxiliary adapter pool designed for effective generalization, especially on minority classes. Adaptive instance routing across these pools captures crucial correlations, facilitating a comprehensive representation of all classes. Consequently, APART tackles the imbalance problem as well as catastrophic forgetting in a unified framework. Extensive benchmark experiments validate the effectiveness of APART. Code is available at: https://github.com/vita-qzh/APART
Related papers
- FedLF: Adaptive Logit Adjustment and Feature Optimization in Federated Long-Tailed Learning [5.23984567704876]
Federated learning offers a paradigm to the challenge of preserving privacy in distributed machine learning.
Traditional approach fails to address the phenomenon of class-wise bias in global long-tailed data.
New method FedLF introduces three modifications in the local training phase: adaptive logit adjustment, continuous class centred optimization, and feature decorrelation.
arXiv Detail & Related papers (2024-09-18T16:25:29Z) - Class-Incremental Learning with CLIP: Adaptive Representation Adjustment and Parameter Fusion [10.322832012497722]
Class-incremental learning is a challenging problem, where the goal is to train a model that can classify data from an increasing number of classes over time.
With the advancement of vision-language pre-trained models such as CLIP, they demonstrate good generalization ability.
However, further adaptation to downstream tasks by simply fine-tuning the model leads to severe forgetting.
Most existing works with pre-trained models assume that the forgetting of old classes is uniform when the model acquires new knowledge.
arXiv Detail & Related papers (2024-07-19T09:20:33Z) - Adaptive Parameterization of Deep Learning Models for Federated Learning [85.82002651944254]
Federated Learning offers a way to train deep neural networks in a distributed fashion.
It incurs a communication overhead as the model parameters or gradients need to be exchanged regularly during training.
In this paper, we propose to utilise parallel Adapters for Federated Learning.
arXiv Detail & Related papers (2023-02-06T17:30:33Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - SVL-Adapter: Self-Supervised Adapter for Vision-Language Pretrained
Models [9.017387427570538]
Vision-language models such as CLIP are pretrained on large volumes of internet sourced image and text pairs.
Due to their size, fine-tuning these models on new datasets can be prohibitively expensive, both in terms of the supervision and compute required.
We present a new approach called SVL-Adapter that combines the complementary strengths of both vision-language pretraining and self-supervised representation learning.
arXiv Detail & Related papers (2022-10-07T19:35:08Z) - Efficient Augmentation for Imbalanced Deep Learning [8.38844520504124]
We study a convolutional neural network's internal representation of imbalanced image data.
We measure the generalization gap between a model's feature embeddings in the training and test sets, showing that the gap is wider for minority classes.
This insight enables us to design an efficient three-phase CNN training framework for imbalanced data.
arXiv Detail & Related papers (2022-07-13T09:43:17Z) - CAFA: Class-Aware Feature Alignment for Test-Time Adaptation [50.26963784271912]
Test-time adaptation (TTA) aims to address this challenge by adapting a model to unlabeled data at test time.
We propose a simple yet effective feature alignment loss, termed as Class-Aware Feature Alignment (CAFA), which simultaneously encourages a model to learn target representations in a class-discriminative manner.
arXiv Detail & Related papers (2022-06-01T03:02:07Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Class Balancing GAN with a Classifier in the Loop [58.29090045399214]
We introduce a novel theoretically motivated Class Balancing regularizer for training GANs.
Our regularizer makes use of the knowledge from a pre-trained classifier to ensure balanced learning of all the classes in the dataset.
We demonstrate the utility of our regularizer in learning representations for long-tailed distributions via achieving better performance than existing approaches over multiple datasets.
arXiv Detail & Related papers (2021-06-17T11:41:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.