Let Community Rules Be Reflected in Online Content Moderation
- URL: http://arxiv.org/abs/2408.12035v1
- Date: Wed, 21 Aug 2024 23:38:02 GMT
- Title: Let Community Rules Be Reflected in Online Content Moderation
- Authors: Wangjiaxuan Xin, Kanlun Wang, Zhe Fu, Lina Zhou,
- Abstract summary: This study proposes a community rule-based content moderation framework.
It integrates community rules into the moderation of user-generated content.
In particular, incorporating community rules substantially enhances model performance in content moderation.
- Score: 2.4717834653693083
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Content moderation is a widely used strategy to prevent the dissemination of irregular information on social media platforms. Despite extensive research on developing automated models to support decision-making in content moderation, there remains a notable scarcity of studies that integrate the rules of online communities into content moderation. This study addresses this gap by proposing a community rule-based content moderation framework that directly integrates community rules into the moderation of user-generated content. Our experiment results with datasets collected from two domains demonstrate the superior performance of models based on the framework to baseline models across all evaluation metrics. In particular, incorporating community rules substantially enhances model performance in content moderation. The findings of this research have significant research and practical implications for improving the effectiveness and generalizability of content moderation models in online communities.
Related papers
- The Unappreciated Role of Intent in Algorithmic Moderation of Social Media Content [2.2618341648062477]
This paper examines the role of intent in content moderation systems.
We review state of the art detection models and benchmark training datasets for online abuse to assess their awareness and ability to capture intent.
arXiv Detail & Related papers (2024-05-17T18:05:13Z) - Content Moderation and the Formation of Online Communities: A
Theoretical Framework [7.900694093691988]
We study the impact of content moderation policies in online communities.
We first characterize the effectiveness of a natural class of moderation policies for creating and sustaining stable communities.
arXiv Detail & Related papers (2023-10-16T16:49:44Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - Interactive Graph Convolutional Filtering [79.34979767405979]
Interactive Recommender Systems (IRS) have been increasingly used in various domains, including personalized article recommendation, social media, and online advertising.
These problems are exacerbated by the cold start problem and data sparsity problem.
Existing Multi-Armed Bandit methods, despite their carefully designed exploration strategies, often struggle to provide satisfactory results in the early stages.
Our proposed method extends interactive collaborative filtering into the graph model to enhance the performance of collaborative filtering between users and items.
arXiv Detail & Related papers (2023-09-04T09:02:31Z) - A Unified Framework for Integrating Semantic Communication and
AI-Generated Content in Metaverse [57.317580645602895]
Integrated Semantic Communication and AI-Generated Content (ISGC) has attracted a lot of attentions recently.
ISGC transfers semantic information from user inputs, generates digital content, and renders graphics for Metaverse.
We introduce a unified framework that captures ISGC two primary benefits, including integration gain for optimized resource allocation.
arXiv Detail & Related papers (2023-05-18T02:02:36Z) - IDA: Informed Domain Adaptive Semantic Segmentation [51.12107564372869]
We propose an Domain Informed Adaptation (IDA) model, a self-training framework that mixes the data based on class-level segmentation performance.
In our IDA model, the class-level performance is tracked by an expected confidence score (ECS) and we then use a dynamic schedule to determine the mixing ratio for data in different domains.
Our proposed method is able to outperform the state-of-the-art UDA-SS method by a margin of 1.1 mIoU in the adaptation of GTA-V to Cityscapes and of 0.9 mIoU in the adaptation of SYNTHIA to City
arXiv Detail & Related papers (2023-03-05T18:16:34Z) - Bandits for Online Calibration: An Application to Content Moderation on
Social Media Platforms [14.242221219862849]
We describe the current content moderation strategy employed by Meta to remove policy-violating content from its platforms.
We use both handcrafted and learned risk models to flag potentially violating content for human review.
Our approach aggregates these risk models into a single ranking score, calibrating them to prioritize more reliable risk models.
arXiv Detail & Related papers (2022-11-11T23:55:53Z) - Reliable Decision from Multiple Subtasks through Threshold Optimization:
Content Moderation in the Wild [7.176020195419459]
Social media platforms struggle to protect users from harmful content through content moderation.
These platforms have recently leveraged machine learning models to cope with the vast amount of user-generated content daily.
Third-party content moderation services provide prediction scores of multiple subtasks, such as predicting the existence of underage personnel, rude gestures, or weapons.
We introduce a simple yet effective threshold optimization method that searches the optimal thresholds of the multiple subtasks to make a reliable moderation decision in a cost-effective way.
arXiv Detail & Related papers (2022-08-16T03:51:43Z) - SoK: Content Moderation in Social Media, from Guidelines to Enforcement,
and Research to Practice [9.356143195807064]
We study the 14 most popular social media content moderation guidelines and practices in the US.
We identify the differences between the content moderation employed in mainstream social media platforms compared to fringe platforms.
We highlight why platforms should shift from a one-size-fits-all model to a more inclusive model.
arXiv Detail & Related papers (2022-06-29T18:48:04Z) - This Must Be the Place: Predicting Engagement of Online Communities in a
Large-scale Distributed Campaign [70.69387048368849]
We study the behavior of communities with millions of active members.
We develop a hybrid model, combining textual cues, community meta-data, and structural properties.
We demonstrate the applicability of our model through Reddit's r/place a large-scale online experiment.
arXiv Detail & Related papers (2022-01-14T08:23:16Z) - Personalized Fashion Recommendation from Personal Social Media Data: An
Item-to-Set Metric Learning Approach [71.63618051547144]
We study the problem of personalized fashion recommendation from social media data.
We present an item-to-set metric learning framework that learns to compute the similarity between a set of historical fashion items of a user to a new fashion item.
To validate the effectiveness of our approach, we collect a real-world social media dataset.
arXiv Detail & Related papers (2020-05-25T23:24:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.