A Unified Plug-and-Play Algorithm with Projected Landweber Operator for Split Convex Feasibility Problems
- URL: http://arxiv.org/abs/2408.12100v1
- Date: Thu, 22 Aug 2024 03:29:51 GMT
- Title: A Unified Plug-and-Play Algorithm with Projected Landweber Operator for Split Convex Feasibility Problems
- Authors: Shuchang Zhang, Hongxia Wang,
- Abstract summary: In recent years Plug-and-Play methods have achieved state-resolution-of-the-art performance in inverse imaging problems by replacing operators with denoisers.
Applying methods with theoretically guaranteed step sizes is difficult, and algorithms are limited to noise.
Project Landweber Operator (PLOPLO) is proposed to address these issues.
- Score: 6.185478918618347
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years Plug-and-Play (PnP) methods have achieved state-of-the-art performance in inverse imaging problems by replacing proximal operators with denoisers. Based on the proximal gradient method, some theoretical results of PnP have appeared, where appropriate step size is crucial for convergence analysis. However, in practical applications, applying PnP methods with theoretically guaranteed step sizes is difficult, and these algorithms are limited to Gaussian noise. In this paper,from a perspective of split convex feasibility problems (SCFP), an adaptive PnP algorithm with Projected Landweber Operator (PnP-PLO) is proposed to address these issues. Numerical experiments on image deblurring, super-resolution, and compressed sensing MRI experiments illustrate that PnP-PLO with theoretical guarantees outperforms state-of-the-art methods such as RED and RED-PRO.
Related papers
- Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
The sequential decision-making problem is statistically learnable if it admits a low-rank structure modeled by predictive state representations (PSRs)
This paper proposes the first known UCB-type approach for PSRs, featuring a novel bonus term that upper bounds the total variation distance between the estimated and true models.
In contrast to existing approaches for PSRs, our UCB-type algorithms enjoy computational tractability, last-iterate guaranteed near-optimal policy, and guaranteed model accuracy.
arXiv Detail & Related papers (2023-07-01T18:35:21Z) - Provably Convergent Plug-and-Play Quasi-Newton Methods [5.9974035827998655]
We propose an efficient method to combine fidelity terms and deep denoisers.
We show that the proposed quasi-Newton algorithm is critical points of a weakly convex function.
Experiments on imageblurring and super-resolution demonstrate faster convergence as compared to other provable deM methods.
arXiv Detail & Related papers (2023-03-09T20:09:15Z) - A relaxed proximal gradient descent algorithm for convergent
plug-and-play with proximal denoiser [6.2484576862659065]
This paper presents a new convergent Plug-and-fidelity Descent (Play) algorithm.
The algorithm converges for a wider range of regular convexization parameters, thus allowing more accurate restoration of an image.
arXiv Detail & Related papers (2023-01-31T16:11:47Z) - Optimality Guarantees for Particle Belief Approximation of POMDPs [55.83001584645448]
Partially observable Markov decision processes (POMDPs) provide a flexible representation for real-world decision and control problems.
POMDPs are notoriously difficult to solve, especially when the state and observation spaces are continuous or hybrid.
We propose a theory characterizing the approximation error of the particle filtering techniques that these algorithms use.
arXiv Detail & Related papers (2022-10-10T21:11:55Z) - Proximal denoiser for convergent plug-and-play optimization with
nonconvex regularization [7.0226402509856225]
Plug-and-Play () methods solve ill proximal-posed inverse problems through algorithms by replacing a neural network operator by a denoising operator.
We show that this denoiser actually correspond to a gradient function.
arXiv Detail & Related papers (2022-01-31T14:05:20Z) - Recovery Analysis for Plug-and-Play Priors using the Restricted
Eigenvalue Condition [48.08511796234349]
We show how to establish theoretical recovery guarantees for the plug-and-play priors (noise) and regularization by denoising (RED) methods.
Our results suggest that models with a pre-trained artifact removal network provides significantly better results compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-07T14:45:38Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
We investigate the problem of best-policy identification in discounted Markov Decision (MDPs) when the learner has access to a generative model.
The advantages of state-of-the-art algorithms are discussed and illustrated.
arXiv Detail & Related papers (2020-09-28T15:22:24Z) - A Fast Stochastic Plug-and-Play ADMM for Imaging Inverse Problems [5.025654873456756]
We propose an efficient plug-and-play ( inverse problems) algorithm for imaging applications.
Our results demonstrate effectiveness of our approach compared with state-of-the-art methods.
arXiv Detail & Related papers (2020-06-20T18:03:52Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
We introduce a framework for designing primal methods under the decentralized optimization setting where local functions are smooth and strongly convex.
Our approach consists of approximately solving a sequence of sub-problems induced by the accelerated augmented Lagrangian method.
When coupled with accelerated gradient descent, our framework yields a novel primal algorithm whose convergence rate is optimal and matched by recently derived lower bounds.
arXiv Detail & Related papers (2020-06-11T18:49:06Z) - Scalable Plug-and-Play ADMM with Convergence Guarantees [24.957046830965822]
We propose an incremental variant of the widely used.
ADMM algorithm, making it scalable to large-scale datasets.
We theoretically analyze the convergence algorithm under a set explicit assumptions.
arXiv Detail & Related papers (2020-06-05T04:10:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.