論文の概要: DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
- arxiv url: http://arxiv.org/abs/2408.12139v1
- Date: Thu, 22 Aug 2024 05:45:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-23 15:03:23.107606
- Title: DRExplainer: Quantifiable Interpretability in Drug Response Prediction with Directed Graph Convolutional Network
- Title(参考訳): DRExplainer: グラフ畳み込みネットワークを用いた薬物応答予測における定量解釈可能性
- Authors: Haoyuan Shi, Tao Xu, Xiaodi Li, Qian Gao, Junfeng Xia, Zhenyu Yue,
- Abstract要約: 薬物反応予測のための新しい解釈可能な予測モデルDRExplainerを提案する。
DRExplainerは、細胞株のマルチオミクスプロファイル、薬物の化学構造、既知の薬物応答を統合した有向二部ネットワークを構築する。
計算実験では、DRExplainerは最先端の予測手法と別のグラフベースの説明手法より優れている。
- 参考スコア(独自算出の注目度): 9.641021461914551
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the response of a cancer cell line to a therapeutic drug is pivotal for personalized medicine. Despite numerous deep learning methods that have been developed for drug response prediction, integrating diverse information about biological entities and predicting the directional response remain major challenges. Here, we propose a novel interpretable predictive model, DRExplainer, which leverages a directed graph convolutional network to enhance the prediction in a directed bipartite network framework. DRExplainer constructs a directed bipartite network integrating multi-omics profiles of cell lines, the chemical structure of drugs and known drug response to achieve directed prediction. Then, DRExplainer identifies the most relevant subgraph to each prediction in this directed bipartite network by learning a mask, facilitating critical medical decision-making. Additionally, we introduce a quantifiable method for model interpretability that leverages a ground truth benchmark dataset curated from biological features. In computational experiments, DRExplainer outperforms state-of-the-art predictive methods and another graph-based explanation method under the same experimental setting. Finally, the case studies further validate the interpretability and the effectiveness of DRExplainer in predictive novel drug response. Our code is available at: https://github.com/vshy-dream/DRExplainer.
- Abstract(参考訳): がん細胞株の治療薬に対する応答を予測することは、パーソナライズされた医療にとって重要な要素である。
薬物反応予測のために開発された多くの深層学習手法にもかかわらず、生物学的実体に関する多様な情報を統合し、指向性反応を予測することは大きな課題である。
本稿では,有向グラフ畳み込みネットワークを利用した新しい解釈可能な予測モデルDRExplainerを提案する。
DRExplainerは、細胞株のマルチオミクスプロファイル、薬物の化学構造、および既知の薬物応答を統合して、有向予測を実現する、有向二部ネットワークを構築する。
そして、DRExplainerは、この有向二部ネットワークにおける各予測に関する最も関連性の高いサブグラフをマスクを学習し、重要な医療的意思決定を促進する。
さらに,生物学的特徴から算出した基底真理ベンチマークデータセットを活用するモデル解釈可能性の定量化手法を提案する。
計算実験では、DRExplainerは、同じ実験環境下で最先端の予測手法とグラフに基づく別の説明手法より優れている。
最後に, DRExplainerの薬物応答予測における解釈可能性および有効性について検討した。
私たちのコードは、https://github.com/vshy-dream/DRExplainer.comで利用可能です。
関連論文リスト
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
本稿では, 疫学知識を統合し, 性能を高めるための新しい疫学情報ネットワーク(EIN)を提案する。
疫学理論をうわさ検出に適応させるため,各利用者が情報源情報に対する姿勢を付加することが期待されている。
実験結果から,提案したEINは実世界のデータセット上で最先端の手法より優れるだけでなく,樹木の深度にまたがる堅牢性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-20T00:43:32Z) - Controllable Edge-Type-Specific Interpretation in Multi-Relational Graph Neural Networks for Drug Response Prediction [6.798254568821052]
本稿では,がん治療薬の反応予測アルゴリズムであるCETExplainerを提案する。
制御可能なエッジタイプ固有の重み付け機構を導入し、予測モデルに対して微細で生物学的に意味のある説明を提供する。
実世界のデータセットに関する実証分析は、CETExplainerが優れた安定性を達成し、主要なアルゴリズムと比較して説明品質を向上させることを示した。
論文 参考訳(メタデータ) (2024-08-30T09:14:38Z) - Research on Adverse Drug Reaction Prediction Model Combining Knowledge Graph Embedding and Deep Learning [36.703773706187256]
本稿では,知識グラフの埋め込みと深層学習に基づく薬物反応予測モデルを開発する。
得られた予測モデルは、予測精度と安定性が良好であり、後続の安全な薬剤指導のための効果的な基準を提供することができる。
論文 参考訳(メタデータ) (2024-07-23T03:25:55Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
同定された問題を解決するために,幾何制約付き確率的モデリング処理を提案する。
構成された埋め込み空間のレイアウトに適切な制約を課すために、重要な幾何学的性質のスイートを組み込む。
スペクトルグラフ理論法は、潜在的な新規クラスの数を推定するために考案された。
論文 参考訳(メタデータ) (2024-03-02T00:56:05Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Interpreting the Mechanism of Synergism for Drug Combinations Using
Attention-Based Hierarchical Graph Pooling [10.898133007285638]
我々は、基礎となる根本的治療目標と相乗効果(MoS)のメカニズムを明らかにする解釈可能なグラフニューラルネットワーク(GNN)を開発した。
提案したGNNモデルは、検出された重要なサブ分子ネットワークに基づいて、薬物結合の相乗効果を予測し、解釈する体系的な方法を提供する。
論文 参考訳(メタデータ) (2022-09-19T11:18:45Z) - Convolutional Motif Kernel Networks [1.104960878651584]
我々のモデルは、小さなデータセットでしっかりと学習でき、関連する医療予測タスクで最先端のパフォーマンスを達成できることを示す。
提案手法はDNAおよびタンパク質配列に利用することができる。
論文 参考訳(メタデータ) (2021-11-03T15:06:09Z) - MOOMIN: Deep Molecular Omics Network for Anti-Cancer Drug Combination
Therapy [2.446672595462589]
本稿では,がん治療における薬物併用の相乗効果を予測できるマルチモーダルグラフニューラルネットワークを提案する。
本モデルでは,薬物とタンパク質の相互作用ネットワークとメタデータに基づいて,薬物のコンテキストを複数スケールで表現する。
このモデルが癌細胞株の組織を広範囲にわたって高い品質で予測できることを実証した。
論文 参考訳(メタデータ) (2021-10-28T13:10:25Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
マルチビューサブスペース学習のための深層コアテンションネットワークを提案する。
共通情報と相補情報の両方を敵意で抽出することを目的としている。
特に、新しいクロス再構成損失を使用し、ラベル情報を利用して潜在表現の構築を誘導する。
論文 参考訳(メタデータ) (2021-02-15T18:46:44Z) - Text Mining to Identify and Extract Novel Disease Treatments From
Unstructured Datasets [56.38623317907416]
Google Cloudを使って、NPRラジオ番組のポッドキャストのエピソードを書き起こします。
次に、テキストを体系的に前処理するためのパイプラインを構築します。
我々のモデルは、Omeprazoleが心臓熱傷の治療に役立てることに成功しました。
論文 参考訳(メタデータ) (2020-10-22T19:52:49Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。