Ultra-broadband non-degenerate guided-wave bi-photon source in the near and mid-infrared
- URL: http://arxiv.org/abs/2408.12203v1
- Date: Thu, 22 Aug 2024 08:23:35 GMT
- Title: Ultra-broadband non-degenerate guided-wave bi-photon source in the near and mid-infrared
- Authors: Franz Roeder, Abira Gnanavel, René Pollmann, Olga Brecht, Michael Stefszky, Laura Padberg, Christof Eigner, Christine Silberhorn, Benjamin Brecht,
- Abstract summary: We present an integrated PDC source based on a Ti:LiNbO$_3$ waveguide that generates broadband bi-photons with central wavelengths at $860,mathrmnm$ and $2800,mathrmnm$.
Their spectral bandwidth exceeds $25,mathrmTHz$ and is achieved by simultaneous matching of the group velocities and cancellation of group velocity dispersion for the signal and idler field.
We provide an intuitive understanding of the process by studying our source's behaviour at different temperatures and pump wavelengths, which agrees well with simulations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The latest applications in ultrafast quantum metrology require bright, broadband bi-photon sources with one of the photons in the mid-infrared and the other in the visible to near infrared. However, existing sources based on bulk crystals are limited in brightness due to the short interaction length and only allow for limited dispersion engineering. Here, we present an integrated PDC source based on a Ti:LiNbO$_3$ waveguide that generates broadband bi-photons with central wavelengths at $860\,\mathrm{nm}$ and $2800\,\mathrm{nm}$. Their spectral bandwidth exceeds $25\,\mathrm{THz}$ and is achieved by simultaneous matching of the group velocities and cancellation of group velocity dispersion for the signal and idler field. We provide an intuitive understanding of the process by studying our source's behaviour at different temperatures and pump wavelengths, which agrees well with simulations.
Related papers
- How to use the dispersion in the $χ^{(3)}$ tensor for broadband generation of polarization-entangled photons [0.0]
Polarization-entangled photon pairs are a widely used resource in quantum optics and technologies.
We show broadband (tens of THz for each photon) generation of polarization-entangled photon pairs by spontaneous four-wave mixing in a diamond crystal.
arXiv Detail & Related papers (2024-08-21T09:43:23Z) - Integrated, bright, broadband parametric down-conversion source for
quantum metrology and spectroscopy [0.0]
In this work we demonstrate an integrated two-colour SPDC source utilising a group-velocity matched lithium niobate waveguide.
By converting a narrow band pump to broadband pulses the created photon pairs show correlation times of $Delta tau approx 120,textfs$ while maintaining the narrow bandwidth $Delta omega_p ll 1,textMHz$ of the CW pump light, yielding strong time-frequency entanglement.
arXiv Detail & Related papers (2024-02-27T13:57:16Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Quantum-limited millimeter wave to optical transduction [50.663540427505616]
Long distance transmission of quantum information is a central ingredient of distributed quantum information processors.
Current approaches to transduction employ solid state links between electrical and optical domains.
We demonstrate quantum-limited transduction of millimeter-wave (mmwave) photons into optical photons using cold $85$Rb atoms as the transducer.
arXiv Detail & Related papers (2022-07-20T18:04:26Z) - Ultrabright Polarization-Entangled Photon Pair Source for
Frequency-Multiplexed Quantum Communication in Free-Space [0.0]
The distribution of entanglement via satellite links will drastically extend the reach of quantum networks.
We report on an ultrabright entangled photon source that is optimized for long-distance free-space transmission.
arXiv Detail & Related papers (2022-05-20T14:39:32Z) - Optimised Domain-engineered Crystals for Pure Telecom Photon Sources [101.18253437732933]
We present a telecom-wavelength parametric down-conversion photon source that operates on the achievable limit of domain engineering.
We generate photons from independent sources which achieve two-photon interference visibilities of up to $98.6pm1.1%$ without narrow-band filtering.
arXiv Detail & Related papers (2021-01-20T19:00:04Z) - Understanding photoluminescence in semiconductor Bragg-reflection
waveguides: Towards an integrated, GHz-rate telecom photon pair source [47.399953444625154]
semiconductor integrated sources of photon pairs may operate at pump wavelengths much closer to the bandgap of the materials.
We show that devices operating near the long wavelength end of the S-band or the short C-band require temporal filtering shorter than 1 ns.
We predict that shifting the operating wavelengths to the L-band and making small adjustments in the material composition will reduce the amount of photoluminescence to negligible values.
arXiv Detail & Related papers (2020-10-12T06:27:30Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.