Finding Closure: A Closer Look at the Gestalt Law of Closure in Convolutional Neural Networks
- URL: http://arxiv.org/abs/2408.12460v1
- Date: Thu, 22 Aug 2024 14:59:37 GMT
- Title: Finding Closure: A Closer Look at the Gestalt Law of Closure in Convolutional Neural Networks
- Authors: Yuyan Zhang, Derya Soydaner, Lisa Koßmann, Fatemeh Behrad, Johan Wagemans,
- Abstract summary: Closure is the ability to fill in gaps to perceive figures as complete wholes.
Recent studies have examined the Closure effect in neural networks.
We introduce well-curated datasets to test for Closure effects, including both modal and amodal completion.
Our comprehensive analysis reveals that VGG16 and DenseNet-121 exhibit the Closure effect, while other CNNs show variable results.
- Score: 4.406699323036466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The human brain has an inherent ability to fill in gaps to perceive figures as complete wholes, even when parts are missing or fragmented. This phenomenon is known as Closure in psychology, one of the Gestalt laws of perceptual organization, explaining how the human brain interprets visual stimuli. Given the importance of Closure for human object recognition, we investigate whether neural networks rely on a similar mechanism. Exploring this crucial human visual skill in neural networks has the potential to highlight their comparability to humans. Recent studies have examined the Closure effect in neural networks. However, they typically focus on a limited selection of Convolutional Neural Networks (CNNs) and have not reached a consensus on their capability to perform Closure. To address these gaps, we present a systematic framework for investigating the Closure principle in neural networks. We introduce well-curated datasets designed to test for Closure effects, including both modal and amodal completion. We then conduct experiments on various CNNs employing different measurements. Our comprehensive analysis reveals that VGG16 and DenseNet-121 exhibit the Closure effect, while other CNNs show variable results. We interpret these findings by blending insights from psychology and neural network research, offering a unique perspective that enhances transparency in understanding neural networks. Our code and dataset will be made available on GitHub.
Related papers
- Investigating the Gestalt Principle of Closure in Deep Convolutional Neural Networks [4.406699323036466]
This study investigates the principle of closure in convolutional neural networks.
We conduct experiments using simple visual stimuli with progressively removed edge sections.
We evaluate well-known networks on their ability to classify incomplete polygons.
arXiv Detail & Related papers (2024-11-01T14:36:21Z) - Graph Neural Networks for Brain Graph Learning: A Survey [53.74244221027981]
Graph neural networks (GNNs) have demonstrated a significant advantage in mining graph-structured data.
GNNs to learn brain graph representations for brain disorder analysis has recently gained increasing attention.
In this paper, we aim to bridge this gap by reviewing brain graph learning works that utilize GNNs.
arXiv Detail & Related papers (2024-06-01T02:47:39Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems [3.604033202771937]
Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features.
Many neurons exhibit $textitmixed selectivity$, i.e., they represent multiple unrelated features.
We propose an automated method for quantifying visual interpretability and an approach for finding meaningful directions in network activation space.
arXiv Detail & Related papers (2023-10-17T17:41:28Z) - Connecting metrics for shape-texture knowledge in computer vision [1.7785095623975342]
Deep neural networks remain brittle and susceptible to many changes in the image that do not cause humans to misclassify images.
Part of this different behavior may be explained by the type of features humans and deep neural networks use in vision tasks.
arXiv Detail & Related papers (2023-01-25T14:37:42Z) - Searching for the Essence of Adversarial Perturbations [73.96215665913797]
We show that adversarial perturbations contain human-recognizable information, which is the key conspirator responsible for a neural network's erroneous prediction.
This concept of human-recognizable information allows us to explain key features related to adversarial perturbations.
arXiv Detail & Related papers (2022-05-30T18:04:57Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Overcoming the Domain Gap in Neural Action Representations [60.47807856873544]
3D pose data can now be reliably extracted from multi-view video sequences without manual intervention.
We propose to use it to guide the encoding of neural action representations together with a set of neural and behavioral augmentations.
To reduce the domain gap, during training, we swap neural and behavioral data across animals that seem to be performing similar actions.
arXiv Detail & Related papers (2021-12-02T12:45:46Z) - Cortico-cerebellar networks as decoupling neural interfaces [1.1879716317856945]
The brain solves the credit assignment problem remarkably well.
For credit to be assigned across neural networks they must, in principle, wait for specific neural computations to finish.
Deep learning methods suffer from similar locking constraints both on the forward and feedback phase.
Here we propose that a specialised brain region, the cerebellum, helps the cerebral cortex solve similar locking problems akin to DNIs.
arXiv Detail & Related papers (2021-10-21T22:02:38Z) - On Tractable Representations of Binary Neural Networks [23.50970665150779]
We consider the compilation of a binary neural network's decision function into tractable representations such as Ordered Binary Decision Diagrams (OBDDs) and Sentential Decision Diagrams (SDDs)
In experiments, we show that it is feasible to obtain compact representations of neural networks as SDDs.
arXiv Detail & Related papers (2020-04-05T03:21:26Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.