Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems
- URL: http://arxiv.org/abs/2310.11431v2
- Date: Wed, 18 Oct 2023 02:02:33 GMT
- Title: Identifying Interpretable Visual Features in Artificial and Biological
Neural Systems
- Authors: David Klindt, Sophia Sanborn, Francisco Acosta, Fr\'ed\'eric Poitevin,
Nina Miolane
- Abstract summary: Single neurons in neural networks are often interpretable in that they represent individual, intuitively meaningful features.
Many neurons exhibit $textitmixed selectivity$, i.e., they represent multiple unrelated features.
We propose an automated method for quantifying visual interpretability and an approach for finding meaningful directions in network activation space.
- Score: 3.604033202771937
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single neurons in neural networks are often interpretable in that they
represent individual, intuitively meaningful features. However, many neurons
exhibit $\textit{mixed selectivity}$, i.e., they represent multiple unrelated
features. A recent hypothesis proposes that features in deep networks may be
represented in $\textit{superposition}$, i.e., on non-orthogonal axes by
multiple neurons, since the number of possible interpretable features in
natural data is generally larger than the number of neurons in a given network.
Accordingly, we should be able to find meaningful directions in activation
space that are not aligned with individual neurons. Here, we propose (1) an
automated method for quantifying visual interpretability that is validated
against a large database of human psychophysics judgments of neuron
interpretability, and (2) an approach for finding meaningful directions in
network activation space. We leverage these methods to discover directions in
convolutional neural networks that are more intuitively meaningful than
individual neurons, as we confirm and investigate in a series of analyses.
Moreover, we apply the same method to three recent datasets of visual neural
responses in the brain and find that our conclusions largely transfer to real
neural data, suggesting that superposition might be deployed by the brain. This
also provides a link with disentanglement and raises fundamental questions
about robust, efficient and factorized representations in both artificial and
biological neural systems.
Related papers
- Interpreting the Second-Order Effects of Neurons in CLIP [73.54377859089801]
We interpret the function of individual neurons in CLIP by automatically describing them using text.
We present the "second-order lens", analyzing the effect flowing from a neuron through the later attention heads, directly to the output.
Our results indicate that a scalable understanding of neurons can be used for model deception and for introducing new model capabilities.
arXiv Detail & Related papers (2024-06-06T17:59:52Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
This paper proposes a novel post-hoc framework for generating semantic explanations of neurons with large foundation models.
Our framework is designed to be compatible with various model architectures and datasets, automated and scalable neuron interpretation.
arXiv Detail & Related papers (2023-10-16T17:04:51Z) - Neuron to Graph: Interpreting Language Model Neurons at Scale [8.32093320910416]
This paper introduces a novel automated approach designed to scale interpretability techniques across a vast array of neurons within Large Language Models.
We propose Neuron to Graph (N2G), an innovative tool that automatically extracts a neuron's behaviour from the dataset it was trained on and translates it into an interpretable graph.
arXiv Detail & Related papers (2023-05-31T14:44:33Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Rapid detection and recognition of whole brain activity in a freely
behaving Caenorhabditis elegans [18.788855494800238]
We propose a cascade solution for long-term and rapid recognition of head ganglion neurons in a freely moving textitC. elegans.
Under the constraint of a small number of training samples, our bottom-up approach is able to process each volume - $1024 times 1024 times 18$ in voxels - in less than 1 second.
Our work represents an important development towards a rapid and fully automated algorithm for decoding whole brain activity underlying natural animal behaviors.
arXiv Detail & Related papers (2021-09-22T01:33:54Z) - NeuroCartography: Scalable Automatic Visual Summarization of Concepts in
Deep Neural Networks [18.62960153659548]
NeuroCartography is an interactive system that summarizes and visualizes concepts learned by neural networks.
It automatically discovers and groups neurons that detect the same concepts.
It describes how such neuron groups interact to form higher-level concepts and the subsequent predictions.
arXiv Detail & Related papers (2021-08-29T22:43:52Z) - Compositional Explanations of Neurons [52.71742655312625]
We describe a procedure for explaining neurons in deep representations by identifying compositional logical concepts.
We use this procedure to answer several questions on interpretability in models for vision and natural language processing.
arXiv Detail & Related papers (2020-06-24T20:37:05Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.