Envisioning Class Entity Reasoning by Large Language Models for Few-shot Learning
- URL: http://arxiv.org/abs/2408.12469v1
- Date: Thu, 22 Aug 2024 15:10:20 GMT
- Title: Envisioning Class Entity Reasoning by Large Language Models for Few-shot Learning
- Authors: Mushui Liu, Fangtai Wu, Bozheng Li, Ziqian Lu, Yunlong Yu, Xi Li,
- Abstract summary: Few-shot learning aims to recognize new concepts using a limited number of visual samples.
Our framework incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs)
For the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an average improvement of 1.95% over the second-best competitor.
- Score: 13.68867780184022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning (FSL) aims to recognize new concepts using a limited number of visual samples. Existing approaches attempt to incorporate semantic information into the limited visual data for category understanding. However, these methods often enrich class-level feature representations with abstract category names, failing to capture the nuanced features essential for effective generalization. To address this issue, we propose a novel framework for FSL, which incorporates both the abstract class semantics and the concrete class entities extracted from Large Language Models (LLMs), to enhance the representation of the class prototypes. Specifically, our framework composes a Semantic-guided Visual Pattern Extraction (SVPE) module and a Prototype-Calibration (PC) module, where the SVPE meticulously extracts semantic-aware visual patterns across diverse scales, while the PC module seamlessly integrates these patterns to refine the visual prototype, enhancing its representativeness. Extensive experiments on four few-shot classification benchmarks and the BSCD-FSL cross-domain benchmarks showcase remarkable advancements over the current state-of-the-art methods. Notably, for the challenging one-shot setting, our approach, utilizing the ResNet-12 backbone, achieves an impressive average improvement of 1.95% over the second-best competitor.
Related papers
- Towards Generative Class Prompt Learning for Fine-grained Visual Recognition [5.633314115420456]
Generative Class Prompt Learning and Contrastive Multi-class Prompt Learning are presented.
Generative Class Prompt Learning improves visio-linguistic synergy in class embeddings by conditioning on few-shot exemplars with learnable class prompts.
CoMPLe builds on this foundation by introducing a contrastive learning component that encourages inter-class separation.
arXiv Detail & Related papers (2024-09-03T12:34:21Z) - Open-vocabulary Semantic Segmentation with Frozen Vision-Language Models [39.479912987123214]
Self-supervised learning has exhibited a notable ability to solve a wide range of visual or language understanding tasks.
We introduce Fusioner, with a lightweight, transformer-based fusion module, that pairs the frozen visual representation with language concept.
We show that, the proposed fusion approach is effective to any pair of visual and language models, even those pre-trained on a corpus of uni-modal data.
arXiv Detail & Related papers (2022-10-27T02:57:26Z) - DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning [37.48292304239107]
We present a transformer-based end-to-end ZSL method named DUET.
We develop a cross-modal semantic grounding network to investigate the model's capability of disentangling semantic attributes from the images.
We find that DUET can often achieve state-of-the-art performance, its components are effective and its predictions are interpretable.
arXiv Detail & Related papers (2022-07-04T11:12:12Z) - Multi-Modal Few-Shot Object Detection with Meta-Learning-Based
Cross-Modal Prompting [77.69172089359606]
We study multi-modal few-shot object detection (FSOD) in this paper, using both few-shot visual examples and class semantic information for detection.
Our approach is motivated by the high-level conceptual similarity of (metric-based) meta-learning and prompt-based learning.
We comprehensively evaluate the proposed multi-modal FSOD models on multiple few-shot object detection benchmarks, achieving promising results.
arXiv Detail & Related papers (2022-04-16T16:45:06Z) - Semantic Representation and Dependency Learning for Multi-Label Image
Recognition [76.52120002993728]
We propose a novel and effective semantic representation and dependency learning (SRDL) framework to learn category-specific semantic representation for each category.
Specifically, we design a category-specific attentional regions (CAR) module to generate channel/spatial-wise attention matrices to guide model.
We also design an object erasing (OE) module to implicitly learn semantic dependency among categories by erasing semantic-aware regions.
arXiv Detail & Related papers (2022-04-08T00:55:15Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z) - UniT: Unified Knowledge Transfer for Any-shot Object Detection and
Segmentation [52.487469544343305]
Methods for object detection and segmentation rely on large scale instance-level annotations for training.
We propose an intuitive and unified semi-supervised model that is applicable to a range of supervision.
arXiv Detail & Related papers (2020-06-12T22:45:47Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.