論文の概要: Improving Radiography Machine Learning Workflows via Metadata Management for Training Data Selection
- arxiv url: http://arxiv.org/abs/2408.12655v1
- Date: Thu, 22 Aug 2024 18:01:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:59:27.278490
- Title: Improving Radiography Machine Learning Workflows via Metadata Management for Training Data Selection
- Title(参考訳): データ選択学習のためのメタデータ管理による放射線処理機械学習ワークフローの改善
- Authors: Mirabel Reid, Christine Sweeney, Oleg Korobkin,
- Abstract要約: 物理科学では、科学研究サイクルによって生成されるメタデータのプールが永遠に増え続ける。
このメタデータを追跡することで、余分な作業の削減、改善、フィーチャーとトレーニングデータセットエンジニアリングプロセスの支援が可能になる。
動的ラジオグラフィーにおける機械学習メタデータ管理のためのツールを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most machine learning models require many iterations of hyper-parameter tuning, feature engineering, and debugging to produce effective results. As machine learning models become more complicated, this pipeline becomes more difficult to manage effectively. In the physical sciences, there is an ever-increasing pool of metadata that is generated by the scientific research cycle. Tracking this metadata can reduce redundant work, improve reproducibility, and aid in the feature and training dataset engineering process. In this case study, we present a tool for machine learning metadata management in dynamic radiography. We evaluate the efficacy of this tool against the initial research workflow and discuss extensions to general machine learning pipelines in the physical sciences.
- Abstract(参考訳): ほとんどの機械学習モデルは、効果的な結果を得るために、ハイパーパラメータチューニング、機能エンジニアリング、デバッグの多くのイテレーションを必要とする。
機械学習モデルが複雑化するにつれて、このパイプラインはより効果的に管理することが難しくなる。
物理科学では、科学研究サイクルによって生成されるメタデータのプールが永遠に増え続ける。
このメタデータを追跡することで、余分な作業の削減、再現性の向上、機能とデータセットエンジニアリングプロセスの強化が可能になる。
本稿では,動的ラジオグラフィにおける機械学習メタデータ管理のためのツールを提案する。
本稿では,このツールの初期の研究ワークフローに対する有効性を評価し,物理科学における一般的な機械学習パイプラインの拡張について論じる。
関連論文リスト
- Metadata practices for simulation workflows [0.0]
本稿では,ソフトウェアやハードウェアに依存しないメタデータの取得と処理に関する一般的な実践について述べる。
1) メタデータを記録、保存し、2) メタデータを選択し、構造化する。
概念実証として、我々は第2段階を支援するPythonツールであるArchivistを開発し、それを用いて、神経科学や水文学とは異なる高性能なユースケースに私たちのプラクティスを適用します。
論文 参考訳(メタデータ) (2024-08-30T14:12:31Z) - Obtaining physical layer data of latest generation networks for investigating adversary attacks [0.0]
機械学習は、5Gや6Gといった最新世代のデータネットワークの機能の最適化に使用できる。
インテリジェント機械学習モデルの振る舞いを操作する敵対策が、大きな関心事になりつつある。
機械学習アプリケーションと連携して動作するシミュレーションモデルを提案する。
論文 参考訳(メタデータ) (2024-05-02T06:03:27Z) - Code Generation for Machine Learning using Model-Driven Engineering and
SysML [0.0]
この研究は、機械学習タスクを形式化する以前の作業を拡張して、実践的なデータ駆動エンジニアリングの実装を促進することを目的としている。
本手法は,天気予報のためのケーススタディにおいて,実現可能性について評価した。
結果は、実装の労力を減らす方法の柔軟性と単純さを示します。
論文 参考訳(メタデータ) (2023-07-10T15:00:20Z) - Model-Based Reinforcement Learning with Multi-Task Offline Pretraining [59.82457030180094]
本稿では,オフラインデータから新しいタスクへ,潜在的に有用なダイナミックスや動作デモを伝達するモデルベースRL法を提案する。
主な考え方は、世界モデルを行動学習のシミュレーターとしてだけでなく、タスクの関連性を測定するツールとして使うことである。
本稿では,Meta-WorldとDeepMind Control Suiteの最先端手法と比較して,我々のアプローチの利点を実証する。
論文 参考訳(メタデータ) (2023-06-06T02:24:41Z) - Hindsight States: Blending Sim and Real Task Elements for Efficient
Reinforcement Learning [61.3506230781327]
ロボット工学では、第一原理から導かれた力学モデルに基づくシミュレーションに基づいて、トレーニングデータを生成する方法がある。
ここでは、力学の複雑さの不均衡を利用して、より標本効率のよい学習を行う。
提案手法をいくつかの課題に対して検証し,既存の近視アルゴリズムと組み合わせた場合の学習改善を実証する。
論文 参考訳(メタデータ) (2023-03-03T21:55:04Z) - Automatic Data Augmentation via Invariance-Constrained Learning [94.27081585149836]
下位のデータ構造は、しばしば学習タスクのソリューションを改善するために利用される。
データ拡張は、入力データに複数の変換を適用することで、トレーニング中にこれらの対称性を誘導する。
この作業は、学習タスクを解決しながらデータ拡張を自動的に適応することで、これらの問題に対処する。
論文 参考訳(メタデータ) (2022-09-29T18:11:01Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
マルチ物理問題における機械学習ツールの効果的な利用の鍵は、それらを物理モデルとコンピュータモデルに結合することである。
本章では, 燃焼システムにおけるデータ駆動型低次モデリングの適用可能性について概説する。
論文 参考訳(メタデータ) (2022-09-05T16:48:34Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
本稿では,基本的なクロスプラットフォームテンソルフレームワークとスクリプト言語エンジンを使用しながら,すべての要件をサポートする統合デプロイメントパイプラインとフリー・ツー・オペレートアプローチを提案する。
しかし、このアプローチは、実際のプロダクショングレードシステムに機械学習機能を実際にデプロイするために必要な手順やパイプラインを提供していない。
論文 参考訳(メタデータ) (2021-12-22T14:45:37Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Autoencoding Features for Aviation Machine Learning Problems [0.0]
本研究では,航空学習問題に対する効果的な特徴を抽出するために,教師なし学習手法であるオートエンコーダについて検討した。
研究結果から,オートエンコーダは,フライトトラックデータに有効な特徴を自動的に抽出するだけでなく,効率的な深部清浄データを抽出し,データサイエンティストの作業量を削減できることが示唆された。
開発されたアプリケーションと技術は、現在および将来の機械学習研究の有効性を改善するために、航空コミュニティ全体と共有されている。
論文 参考訳(メタデータ) (2020-11-03T04:09:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。