論文の概要: Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
- arxiv url: http://arxiv.org/abs/2408.12659v1
- Date: Thu, 22 Aug 2024 18:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:59:27.273103
- Title: Disentangled Structural and Featural Representation for Task-Agnostic Graph Valuation
- Title(参考訳): タスク非依存グラフ評価のためのアンタングル構造と特徴表現
- Authors: Ali Falahati, Mohammad Mohammadi Amiri,
- Abstract要約: 我々は、共有ノード置換を用いて売り手と買い手のグラフを整列させる、ブラインドメッセージパッシングと呼ばれる新しいフレームワークを導入する。
次に、データ評価のための買い手と売り手のグラフの偉業的な側面を検討し、それらの統計的類似点と相違点を捉える。
当社のアプローチは、買い手と売り手がお互いのデータセットに気付かないことを保証するものです。
- 参考スコア(独自算出の注目度): 9.633110326799992
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the emergence of data marketplaces, the demand for methods to assess the value of data has increased significantly. While numerous techniques have been proposed for this purpose, none have specifically addressed graphs as the main data modality. Graphs are widely used across various fields, ranging from chemical molecules to social networks. In this study, we break down graphs into two main components: structural and featural, and we focus on evaluating data without relying on specific task-related metrics, making it applicable in practical scenarios where validation requirements may be lacking. We introduce a novel framework called blind message passing, which aligns the seller's and buyer's graphs using a shared node permutation based on graph matching. This allows us to utilize the graph Wasserstein distance to quantify the differences in the structural distribution of graph datasets, called the structural disparities. We then consider featural aspects of buyers' and sellers' graphs for data valuation and capture their statistical similarities and differences, referred to as relevance and diversity, respectively. Our approach ensures that buyers and sellers remain unaware of each other's datasets. Our experiments on real datasets demonstrate the effectiveness of our approach in capturing the relevance, diversity, and structural disparities of seller data for buyers, particularly in graph-based data valuation scenarios.
- Abstract(参考訳): データマーケットプレースの出現に伴い、データの価値を評価する方法の需要が大幅に増加した。
この目的のために多くの技術が提案されているが、グラフを主データモダリティとして具体的に扱うものは存在しない。
グラフは、化学分子からソーシャルネットワークまで、様々な分野に広く使われている。
本研究では,グラフを2つの主要構成要素に分割する。構造的および卓越的であり,特定のタスク関連の指標に頼らずにデータを評価することに集中し,検証要件が欠如しているような現実的なシナリオに適用できるようにする。
我々は,グラフマッチングに基づく共有ノード置換を用いて,売り手と買い手のグラフを整列するブラインドメッセージパッシングという新しいフレームワークを導入する。
これにより、グラフワッサーシュタイン距離を利用して、構造格差と呼ばれるグラフデータセットの構造分布の違いを定量化できる。
次に、データ評価のための買い手グラフと売り手のグラフの偉業的な側面を考察し、その統計的類似点と相違点をそれぞれ関連性および多様性として捉えた。
当社のアプローチは、買い手と売り手がお互いのデータセットに気付かないことを保証するものです。
実際のデータセットに対する我々の実験は、特にグラフベースのデータ評価シナリオにおいて、購入者に対する販売者データの関連性、多様性、構造的格差を捉える上で、我々のアプローチの有効性を実証する。
関連論文リスト
- Towards Graph Prompt Learning: A Survey and Beyond [38.55555996765227]
大規模"事前訓練と迅速な学習"パラダイムは、顕著な適応性を示している。
この調査は、この分野における100以上の関連する研究を分類し、一般的な設計原則と最新の応用を要約する。
論文 参考訳(メタデータ) (2024-08-26T06:36:42Z) - On Discprecncies between Perturbation Evaluations of Graph Neural
Network Attributions [49.8110352174327]
我々は、グラフ領域で以前に検討されていない視点から帰属法を評価する:再学習。
中心となる考え方は、属性によって識別される重要な(あるいは重要でない)関係でネットワークを再訓練することである。
我々は4つの最先端GNN属性法と5つの合成および実世界のグラフ分類データセットについて分析を行った。
論文 参考訳(メタデータ) (2024-01-01T02:03:35Z) - ALEX: Towards Effective Graph Transfer Learning with Noisy Labels [11.115297917940829]
本稿では,グラフ伝達学習の課題に対処するため,バランスアライメントと情報認識試験(ALEX)と呼ばれる新しい手法を提案する。
ALEXはまず特異値分解を使用して、重要な構造的意味論を持つ異なるビューを生成し、堅牢なノード表現を提供する。
この基礎の上に構築され、複雑なマルチモーダル分布の暗黙的な領域アライメントのために、対向領域判別器が組み込まれている。
論文 参考訳(メタデータ) (2023-09-26T04:59:49Z) - A Survey of Imbalanced Learning on Graphs: Problems, Techniques, and
Future Directions [64.84521350148513]
グラフは、現実世界の無数に存在する相互接続構造を表す。
グラフ学習方法のような効果的なグラフ分析により、ユーザはグラフデータから深い洞察を得ることができる。
しかし、これらの手法はデータ不均衡に悩まされることが多く、グラフデータでは、あるセグメントが豊富なデータを持っているのに、他のセグメントが不足しているのが一般的な問題である。
これは、より正確で代表的な学習結果のために、これらのデータ分散スキューを補正することを目的として、グラフ上の不均衡学習の出現する分野を必要とする。
論文 参考訳(メタデータ) (2023-08-26T09:11:44Z) - Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views [1.4445779250002606]
本稿では,グラフ上の拡散フィルタを統合する新しい多視点コントラスト学習手法を提案する。
複数のグラフビューを拡張として組み込むことで、異種グラフの構造的等価性を捉える。
論文 参考訳(メタデータ) (2023-08-19T17:42:02Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - Metric Distribution to Vector: Constructing Data Representation via
Broad-Scale Discrepancies [15.40538348604094]
本稿では,各データに対するベクトル表現に分布特性を抽出するために, $mathbfMetricDistribution2vec$ という新しい埋め込み方式を提案する。
本研究では,広範囲な実世界構造グラフデータセット上での教師付き予測タスクにおける表現法の適用と有効性を示す。
論文 参考訳(メタデータ) (2022-10-02T03:18:30Z) - A Survey on Fairness for Machine Learning on Graphs [2.3326951882644553]
この調査は、リレーショナルデータに対する公平性に特化した最初の調査である。
グラフマイニングの公正性において、最先端技術に関する包括的なレビューを提示することを目的としている。
論文 参考訳(メタデータ) (2022-05-11T10:40:56Z) - Graph-in-Graph (GiG): Learning interpretable latent graphs in
non-Euclidean domain for biological and healthcare applications [52.65389473899139]
グラフは、医療領域において、非ユークリッドな非ユークリッドデータをユビキタスに表現し、分析するための強力なツールである。
近年の研究では、入力データサンプル間の関係を考慮すると、下流タスクに正の正の正則化効果があることが示されている。
タンパク質分類と脳イメージングのためのニューラルネットワークアーキテクチャであるGraph-in-Graph(GiG)を提案する。
論文 参考訳(メタデータ) (2022-04-01T10:01:37Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
まず,グラフデータ拡張のための分類法を提案し,その拡張情報モダリティに基づいて関連研究を分類し,構造化されたレビューを提供する。
DGLにおける2つの課題(すなわち、最適グラフ学習と低リソースグラフ学習)に焦点を当て、グラフデータ拡張に基づく既存の学習パラダイムについて議論し、レビューする。
論文 参考訳(メタデータ) (2022-02-16T18:30:33Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
グラフ上での自己教師型学習をコントラッシブ手法を用いて研究する。
複数の部分空間におけるグラフの対比により、グラフエンコーダはより豊富な特徴を捉えることができる。
論文 参考訳(メタデータ) (2021-07-20T22:09:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。