論文の概要: Quantization-free Lossy Image Compression Using Integer Matrix Factorization
- arxiv url: http://arxiv.org/abs/2408.12691v1
- Date: Thu, 22 Aug 2024 19:08:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:48:16.005664
- Title: Quantization-free Lossy Image Compression Using Integer Matrix Factorization
- Title(参考訳): Integer Matrix Factorization を用いた無量子ロシー画像圧縮
- Authors: Pooya Ashtari, Pourya Behmandpoor, Fateme Nateghi Haredasht, Jonathan H. Chen, Panagiotis Patrinos, Sabine Van Huffel,
- Abstract要約: 我々は、新しい量子化自由損失画像圧縮法を開発するために、整数行列分解(IMF)の変種を導入する。
IMFは、画像データの低ランク表現を、有界整数要素を持つ2つの小さな因子行列の積として提供する。
我々の手法は、JPEGを低ビットレートで0.25ビット/ピクセル(bpp)以下で連続的に上回り、高いビットレートで比較する。
- 参考スコア(独自算出の注目度): 8.009813033356478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lossy image compression is essential for efficient transmission and storage. Traditional compression methods mainly rely on discrete cosine transform (DCT) or singular value decomposition (SVD), both of which represent image data in continuous domains and therefore necessitate carefully designed quantizers. Notably, SVD-based methods are more sensitive to quantization errors than DCT-based methods like JPEG. To address this issue, we introduce a variant of integer matrix factorization (IMF) to develop a novel quantization-free lossy image compression method. IMF provides a low-rank representation of the image data as a product of two smaller factor matrices with bounded integer elements, thereby eliminating the need for quantization. We propose an efficient, provably convergent iterative algorithm for IMF using a block coordinate descent (BCD) scheme, with subproblems having closed-form solutions. Our experiments on the Kodak and CLIC 2024 datasets demonstrate that our IMF compression method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates. We also assessed our method's capability to preserve visual semantics by evaluating an ImageNet pre-trained classifier on compressed images. Remarkably, our method improved top-1 accuracy by over 5 percentage points compared to JPEG at bit rates under 0.25 bpp. The project is available at https://github.com/pashtari/lrf .
- Abstract(参考訳): 画像圧縮は効率的な伝送と保存に不可欠である。
従来の圧縮法は主に離散コサイン変換(DCT)や特異値分解(SVD)に依存しており、どちらも連続的な領域における画像データを表すため、慎重に設計された量化器を必要とする。
特にSVDベースの手法はJPEGのようなDCTベースの手法よりも量子化誤差に敏感である。
この問題に対処するために、新しい量子化自由損失画像圧縮法を開発するために、整数行列分解(IMF)の変種を導入する。
IMFは、画像データの低ランク表現を、有界整数要素を持つ2つの小さな因子行列の積として提供し、量子化の必要性を排除する。
本稿では,ブロック座標降下法 (BCD) を用いて, 閉形式解を持つサブプロブレムを用いて, IMF の効率的かつ確実に収束する反復的アルゴリズムを提案する。
Kodak と CLIC 2024 データセットに関する実験により、IMF の圧縮法は1ピクセル当たり 0.25 ビット (bpp) 以下の低ビットレートでJPEG を一貫して上回り、高いビットレートで比較できることを示した。
また,圧縮画像上でのImageNet事前学習型分類器の評価により,視覚的セマンティクスの保存能力も評価した。
また,0.25bpp以下のビットレートではJPEGに比べてトップ1の精度が5ポイント以上向上した。
プロジェクトはhttps://github.com/pashtari/lrf で公開されている。
関連論文リスト
- 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
低ビット量子化は、エッジ展開のための画像超解像(SR)モデルを圧縮するために広く普及している。
低ビット量子化は、フル精度(FP)と比較してSRモデルの精度を低下させることが知られている。
本稿では2DQuantという画像超解像のための2段階の低ビット後量子化(PTQ)法を提案する。
論文 参考訳(メタデータ) (2024-06-10T06:06:11Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
本研究は、最適な視覚的忠実度のために設計された強化されたニューラル圧縮手法を提案する。
我々は,洗練されたセマンティック・アンサンブル・ロス,シャルボニエ・ロス,知覚的損失,スタイル・ロス,非バイナリ・ディバイザ・ロスを組み込んだモデルを構築した。
実験により,本手法は神経画像圧縮の統計的忠実度を著しく向上させることが示された。
論文 参考訳(メタデータ) (2024-01-25T08:11:27Z) - Hyperspectral Image Compression Using Sampling and Implicit Neural
Representations [2.3931689873603603]
ハイパースペクトル画像は、シーンの画像中の画素の電磁スペクトルを記録する。
これらの画像の撮影コストが低下する中で、ハイパースペクトル画像の保存、送信、解析のための効率的な技術を開発する必要がある。
本稿では,暗黙的ニューラル表現を用いたハイパースペクトル画像圧縮法を提案する。
論文 参考訳(メタデータ) (2023-12-04T01:10:04Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
本稿ではベクトル量子化(VQ)に基づく生成モデルを画像圧縮領域に導入する。
VQGANモデルによって学習されたコードブックは、強い表現能力をもたらす。
提案したフレームワークは、知覚的品質指向のメトリクスで最先端のコーデックより優れている。
論文 参考訳(メタデータ) (2023-07-17T06:14:19Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
近年,学習画像圧縮(lic)法は大きな進歩を遂げている。
licメソッドは、画像圧縮に不可欠な画像構造とテクスチャコンポーネントを明示的に探索することができない。
原画像の構造とテクスチャに基づいて可視パッチをサンプリングするDA-Maskを提案する。
極めて低ビットレート圧縮のために, lic と lic のエンドツーエンドを統一する最初のフレームワークである, 単純で効果的なマスク付き圧縮モデル (MCM) を提案する。
論文 参考訳(メタデータ) (2023-06-27T15:36:22Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
JPEG画像のロスレス圧縮を学習するための新しいフレームワークを提案する。
周波数領域での学習を可能にするために、DCT係数は暗黙の局所冗長性を利用するためにグループに分割される。
グループ化されたDCT係数のエントロピーモデリングを実現するために、重み付きブロックに基づいてオートエンコーダのようなアーキテクチャを設計する。
論文 参考訳(メタデータ) (2023-03-05T13:15:28Z) - Asymmetric Learned Image Compression with Multi-Scale Residual Block,
Importance Map, and Post-Quantization Filtering [15.056672221375104]
ディープラーニングに基づく画像圧縮は、最新のH.266/VVCよりも高いレート歪み(R-D)性能を実現している。
多くの先導的な学習スキームは、パフォーマンスと複雑さの間の良いトレードオフを維持することができません。
そこで本研究では,R-D の性能を技術状況よりも低い複雑さで実現した,効率的かつ効果的な画像符号化フレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-21T09:34:29Z) - Modeling Image Quantization Tradeoffs for Optimal Compression [0.0]
ロスシー圧縮アルゴリズムは、圧縮率を上げるために高周波データを定量化することでトレードオフを狙う。
本稿では,Deep Learningとminimax損失関数を用いた量子化テーブルの最適化手法を提案する。
論文 参考訳(メタデータ) (2021-12-14T07:35:22Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
我々はJPEGファイル量子化行列を用いたアーティファクト修正のための新しいアーキテクチャを開発した。
これにより、特定の品質設定のためにトレーニングされたモデルに対して、単一のモデルで最先端のパフォーマンスを達成できます。
論文 参考訳(メタデータ) (2020-04-17T00:10:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。