Quantization-aware Matrix Factorization for Low Bit Rate Image Compression
- URL: http://arxiv.org/abs/2408.12691v2
- Date: Thu, 27 Mar 2025 14:26:49 GMT
- Title: Quantization-aware Matrix Factorization for Low Bit Rate Image Compression
- Authors: Pooya Ashtari, Pourya Behmandpoor, Fateme Nateghi Haredasht, Jonathan H. Chen, Panagiotis Patrinos, Sabine Van Huffel,
- Abstract summary: Lossy image compression is essential for efficient transmission and storage.<n>We introduce a quantization-aware matrix factorization (QMF) to develop a novel lossy image compression method.<n>Our method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates.
- Score: 8.009813033356478
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lossy image compression is essential for efficient transmission and storage. Traditional compression methods mainly rely on discrete cosine transform (DCT) or singular value decomposition (SVD), both of which represent image data in continuous domains and, therefore, necessitate carefully designed quantizers. Notably, these methods consider quantization as a separate step, where quantization errors cannot be incorporated into the compression process. The sensitivity of these methods, especially SVD-based ones, to quantization errors significantly degrades reconstruction quality. To address this issue, we introduce a quantization-aware matrix factorization (QMF) to develop a novel lossy image compression method. QMF provides a low-rank representation of the image data as a product of two smaller factor matrices, with elements constrained to bounded integer values, thereby effectively integrating quantization with low-rank approximation. We propose an efficient, provably convergent iterative algorithm for QMF using a block coordinate descent (BCD) scheme, with subproblems having closed-form solutions. Our experiments on the Kodak and CLIC 2024 datasets demonstrate that our QMF compression method consistently outperforms JPEG at low bit rates below 0.25 bits per pixel (bpp) and remains comparable at higher bit rates. We also assessed our method's capability to preserve visual semantics by evaluating an ImageNet pre-trained classifier on compressed images. Remarkably, our method improved top-1 accuracy by over 5 percentage points compared to JPEG at bit rates under 0.25 bpp. The project is available at https://github.com/pashtari/lrf .
Related papers
- A Fast Quantum Image Compression Algorithm based on Taylor Expansion [0.0]
In this study, we upgrade a quantum image compression algorithm within parameterized quantum circuits.
Our approach encodes image data as unitary operator parameters and applies the quantum compilation algorithm to emulate the encryption process.
Experimental results on benchmark images, including Lenna and Cameraman, show that our method achieves up to 86% reduction in the number of iterations.
arXiv Detail & Related papers (2025-02-15T06:03:49Z) - CALLIC: Content Adaptive Learning for Lossless Image Compression [64.47244912937204]
CALLIC sets a new state-of-the-art (SOTA) for learned lossless image compression.
We propose a content-aware autoregressive self-attention mechanism by leveraging convolutional gating operations.
During encoding, we decompose pre-trained layers, including depth-wise convolutions, using low-rank matrices and then adapt the incremental weights on testing image by Rate-guided Progressive Fine-Tuning (RPFT)
RPFT fine-tunes with gradually increasing patches that are sorted in descending order by estimated entropy, optimizing learning process and reducing adaptation time.
arXiv Detail & Related papers (2024-12-23T10:41:18Z) - DeepHQ: Learned Hierarchical Quantizer for Progressive Deep Image Coding [27.875207681547074]
progressive image coding (PIC) aims to compress various qualities of images into a single bitstream.
Research on neural network (NN)-based PIC is in its early stages.
We propose an NN-based progressive coding method that firstly utilizes learned quantization step sizes via learning for each quantization layer.
arXiv Detail & Related papers (2024-08-22T06:32:53Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment.
It is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts.
We present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization.
arXiv Detail & Related papers (2024-06-10T06:06:11Z) - Neural Image Compression with Quantization Rectifier [7.097091519502871]
We develop a novel quantization (QR) method for image compression that leverages image feature correlation to mitigate the impact of quantization.
Our method designs a neural network architecture that predicts unquantized features from the quantized ones.
In evaluation, we integrate QR into state-of-the-art neural image codecs and compare enhanced models and baselines on the widely-used Kodak benchmark.
arXiv Detail & Related papers (2024-03-25T22:26:09Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Hyperspectral Image Compression Using Sampling and Implicit Neural
Representations [2.3931689873603603]
Hyperspectral images record the electromagnetic spectrum for a pixel in the image of a scene.
With the decreasing cost of capturing these images, there is a need to develop efficient techniques for storing, transmitting, and analyzing hyperspectral images.
This paper develops a method for hyperspectral image compression using implicit neural representations.
arXiv Detail & Related papers (2023-12-04T01:10:04Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - You Can Mask More For Extremely Low-Bitrate Image Compression [80.7692466922499]
Learned image compression (LIC) methods have experienced significant progress during recent years.
LIC methods fail to explicitly explore the image structure and texture components crucial for image compression.
We present DA-Mask that samples visible patches based on the structure and texture of original images.
We propose a simple yet effective masked compression model (MCM), the first framework that unifies LIC and LIC end-to-end for extremely low-bitrate compression.
arXiv Detail & Related papers (2023-06-27T15:36:22Z) - Learned Lossless Compression for JPEG via Frequency-Domain Prediction [50.20577108662153]
We propose a novel framework for learned lossless compression of JPEG images.
To enable learning in the frequency domain, DCT coefficients are partitioned into groups to utilize implicit local redundancy.
An autoencoder-like architecture is designed based on the weight-shared blocks to realize entropy modeling of grouped DCT coefficients.
arXiv Detail & Related papers (2023-03-05T13:15:28Z) - Asymmetric Learned Image Compression with Multi-Scale Residual Block,
Importance Map, and Post-Quantization Filtering [15.056672221375104]
Deep learning-based image compression has achieved better ratedistortion (R-D) performance than the latest traditional method, H.266/VVC.
Many leading learned schemes cannot maintain a good trade-off between performance and complexity.
We propose an effcient and effective image coding framework, which achieves similar R-D performance with lower complexity than the state of the art.
arXiv Detail & Related papers (2022-06-21T09:34:29Z) - Modeling Image Quantization Tradeoffs for Optimal Compression [0.0]
Lossy compression algorithms target tradeoffs by quantizating high frequency data to increase compression rates.
We propose a new method of optimizing quantization tables using Deep Learning and a minimax loss function.
arXiv Detail & Related papers (2021-12-14T07:35:22Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.