Neural Image Compression with Quantization Rectifier
- URL: http://arxiv.org/abs/2403.17236v1
- Date: Mon, 25 Mar 2024 22:26:09 GMT
- Title: Neural Image Compression with Quantization Rectifier
- Authors: Wei Luo, Bo Chen,
- Abstract summary: We develop a novel quantization (QR) method for image compression that leverages image feature correlation to mitigate the impact of quantization.
Our method designs a neural network architecture that predicts unquantized features from the quantized ones.
In evaluation, we integrate QR into state-of-the-art neural image codecs and compare enhanced models and baselines on the widely-used Kodak benchmark.
- Score: 7.097091519502871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural image compression has been shown to outperform traditional image codecs in terms of rate-distortion performance. However, quantization introduces errors in the compression process, which can degrade the quality of the compressed image. Existing approaches address the train-test mismatch problem incurred during quantization, the random impact of quantization on the expressiveness of image features is still unsolved. This paper presents a novel quantization rectifier (QR) method for image compression that leverages image feature correlation to mitigate the impact of quantization. Our method designs a neural network architecture that predicts unquantized features from the quantized ones, preserving feature expressiveness for better image reconstruction quality. We develop a soft-to-predictive training technique to integrate QR into existing neural image codecs. In evaluation, we integrate QR into state-of-the-art neural image codecs and compare enhanced models and baselines on the widely-used Kodak benchmark. The results show consistent coding efficiency improvement by QR with a negligible increase in the running time.
Related papers
- Enhancing Perception Quality in Remote Sensing Image Compression via Invertible Neural Network [10.427300958330816]
Decoding remote sensing images to achieve high perceptual quality, particularly at lows, remains a significant challenge.
We propose the invertible neural network-based remote sensing image compression (INN-RSIC) method.
Our INN-RSIC significantly outperforms the existing state-of-the-art traditional and deep learning-based image compression methods in terms of perception quality.
arXiv Detail & Related papers (2024-05-17T03:52:37Z) - Semantic Ensemble Loss and Latent Refinement for High-Fidelity Neural Image Compression [58.618625678054826]
This study presents an enhanced neural compression method designed for optimal visual fidelity.
We have trained our model with a sophisticated semantic ensemble loss, integrating Charbonnier loss, perceptual loss, style loss, and a non-binary adversarial loss.
Our empirical findings demonstrate that this approach significantly improves the statistical fidelity of neural image compression.
arXiv Detail & Related papers (2024-01-25T08:11:27Z) - Transferable Learned Image Compression-Resistant Adversarial Perturbations [66.46470251521947]
Adversarial attacks can readily disrupt the image classification system, revealing the vulnerability of DNN-based recognition tasks.
We introduce a new pipeline that targets image classification models that utilize learned image compressors as pre-processing modules.
arXiv Detail & Related papers (2024-01-06T03:03:28Z) - Extreme Image Compression using Fine-tuned VQGANs [43.43014096929809]
We introduce vector quantization (VQ)-based generative models into the image compression domain.
The codebook learned by the VQGAN model yields a strong expressive capacity.
The proposed framework outperforms state-of-the-art codecs in terms of perceptual quality-oriented metrics.
arXiv Detail & Related papers (2023-07-17T06:14:19Z) - Estimating the Resize Parameter in End-to-end Learned Image Compression [50.20567320015102]
We describe a search-free resizing framework that can further improve the rate-distortion tradeoff of recent learned image compression models.
Our results show that our new resizing parameter estimation framework can provide Bjontegaard-Delta rate (BD-rate) improvement of about 10% against leading perceptual quality engines.
arXiv Detail & Related papers (2022-04-26T01:35:02Z) - Neural JPEG: End-to-End Image Compression Leveraging a Standard JPEG
Encoder-Decoder [73.48927855855219]
We propose a system that learns to improve the encoding performance by enhancing its internal neural representations on both the encoder and decoder ends.
Experiments demonstrate that our approach successfully improves the rate-distortion performance over JPEG across various quality metrics.
arXiv Detail & Related papers (2022-01-27T20:20:03Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Implicit Neural Representations (INRs) have gained attention as a novel and effective representation for various data types.
We propose the first comprehensive compression pipeline based on INRs including quantization, quantization-aware retraining and entropy coding.
We find that our approach to source compression with INRs vastly outperforms similar prior work.
arXiv Detail & Related papers (2021-12-08T13:02:53Z) - Quantization Guided JPEG Artifact Correction [69.04777875711646]
We develop a novel architecture for artifact correction using the JPEG files quantization matrix.
This allows our single model to achieve state-of-the-art performance over models trained for specific quality settings.
arXiv Detail & Related papers (2020-04-17T00:10:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.