Generating Realistic X-ray Scattering Images Using Stable Diffusion and Human-in-the-loop Annotations
- URL: http://arxiv.org/abs/2408.12720v1
- Date: Thu, 22 Aug 2024 20:23:04 GMT
- Title: Generating Realistic X-ray Scattering Images Using Stable Diffusion and Human-in-the-loop Annotations
- Authors: Zhuowen Zhao, Xiaoya Chong, Tanny Chavez, Alexander Hexemer,
- Abstract summary: We fine-tuned a foundational stable diffusion model to generate new scientific images from given prompts.
Some of the generated images exhibit significant unrealistic artifacts, commonly known as "hallucinations"
We trained various computer vision models on a dataset composed of 60% human-approved generated images and 40% experimental images to detect unrealistic images.
- Score: 42.47750355293256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We fine-tuned a foundational stable diffusion model using X-ray scattering images and their corresponding descriptions to generate new scientific images from given prompts. However, some of the generated images exhibit significant unrealistic artifacts, commonly known as "hallucinations". To address this issue, we trained various computer vision models on a dataset composed of 60% human-approved generated images and 40% experimental images to detect unrealistic images. The classified images were then reviewed and corrected by human experts, and subsequently used to further refine the classifiers in next rounds of training and inference. Our evaluations demonstrate the feasibility of generating high-fidelity, domain-specific images using a fine-tuned diffusion model. We anticipate that generative AI will play a crucial role in enhancing data augmentation and driving the development of digital twins in scientific research facilities.
Related papers
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Let Real Images be as a Judger, Spotting Fake Images Synthesized with Generative Models [16.900526163168827]
We study the artifact patterns in fake images synthesized by different generative models.
In this paper, we employ natural traces shared only by real images as an additional predictive target in the detector.
Our proposed method gives 96.1% mAP significantly outperforms the baselines.
arXiv Detail & Related papers (2024-03-25T07:58:58Z) - Unveiling the Truth: Exploring Human Gaze Patterns in Fake Images [34.02058539403381]
We leverage human semantic knowledge to investigate the possibility of being included in frameworks of fake image detection.
A preliminary statistical analysis is conducted to explore the distinctive patterns in how humans perceive genuine and altered images.
arXiv Detail & Related papers (2024-03-13T19:56:30Z) - Diffusion Facial Forgery Detection [56.69763252655695]
This paper introduces DiFF, a comprehensive dataset dedicated to face-focused diffusion-generated images.
We conduct extensive experiments on the DiFF dataset via a human test and several representative forgery detection methods.
The results demonstrate that the binary detection accuracy of both human observers and automated detectors often falls below 30%.
arXiv Detail & Related papers (2024-01-29T03:20:19Z) - Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
We introduce a novel dataset comprising 10,168 generated images, each annotated with per-pixel perceptual artifact labels.
A segmentation model, trained on our proposed dataset, effectively localizes artifacts across a range of tasks.
We propose an innovative zoom-in inpainting pipeline that seamlessly rectifies perceptual artifacts in the generated images.
arXiv Detail & Related papers (2023-10-09T10:22:08Z) - Deceptive-NeRF/3DGS: Diffusion-Generated Pseudo-Observations for High-Quality Sparse-View Reconstruction [60.52716381465063]
We introduce Deceptive-NeRF/3DGS to enhance sparse-view reconstruction with only a limited set of input images.
Specifically, we propose a deceptive diffusion model turning noisy images rendered from few-view reconstructions into high-quality pseudo-observations.
Our system progressively incorporates diffusion-generated pseudo-observations into the training image sets, ultimately densifying the sparse input observations by 5 to 10 times.
arXiv Detail & Related papers (2023-05-24T14:00:32Z) - Trade-offs in Fine-tuned Diffusion Models Between Accuracy and
Interpretability [5.865936619867771]
We unravel a consequential trade-off between image fidelity as gauged by conventional metrics and model interpretability in generative diffusion models.
We present a set of design principles for the development of truly interpretable generative models.
arXiv Detail & Related papers (2023-03-31T09:11:26Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z) - RoentGen: Vision-Language Foundation Model for Chest X-ray Generation [7.618389245539657]
We develop a strategy to overcome the large natural-medical distributional shift by adapting a pre-trained latent diffusion model on a corpus of publicly available chest x-rays.
We investigate the model's ability to generate high-fidelity, diverse synthetic CXR conditioned on text prompts.
We present evidence that the resulting model (RoentGen) is able to create visually convincing, diverse synthetic CXR images.
arXiv Detail & Related papers (2022-11-23T06:58:09Z) - Adapting Pretrained Vision-Language Foundational Models to Medical
Imaging Domains [3.8137985834223502]
Building generative models for medical images that faithfully depict clinical context may help alleviate the paucity of healthcare datasets.
We explore the sub-components of the Stable Diffusion pipeline to fine-tune the model to generate medical images.
Our best-performing model improves upon the stable diffusion baseline and can be conditioned to insert a realistic-looking abnormality on a synthetic radiology image.
arXiv Detail & Related papers (2022-10-09T01:43:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.