SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection
- URL: http://arxiv.org/abs/2408.12748v1
- Date: Thu, 22 Aug 2024 22:13:13 GMT
- Title: SLM Meets LLM: Balancing Latency, Interpretability and Consistency in Hallucination Detection
- Authors: Mengya Hu, Rui Xu, Deren Lei, Yaxi Li, Mingyu Wang, Emily Ching, Eslam Kamal, Alex Deng,
- Abstract summary: Large language models (LLMs) are highly capable but face latency challenges in real-time applications.
This study optimize the real-time interpretable hallucination detection by introducing effective prompting techniques.
- Score: 10.54378596443678
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) are highly capable but face latency challenges in real-time applications, such as conducting online hallucination detection. To overcome this issue, we propose a novel framework that leverages a small language model (SLM) classifier for initial detection, followed by a LLM as constrained reasoner to generate detailed explanations for detected hallucinated content. This study optimizes the real-time interpretable hallucination detection by introducing effective prompting techniques that align LLM-generated explanations with SLM decisions. Empirical experiment results demonstrate its effectiveness, thereby enhancing the overall user experience.
Related papers
- HuDEx: Integrating Hallucination Detection and Explainability for Enhancing the Reliability of LLM responses [0.12499537119440242]
This paper proposes an explanation enhanced hallucination-detection model, coined as HuDEx.
The proposed model provides a novel approach to integrate detection with explanations, and enable both users and the LLM itself to understand and reduce errors.
arXiv Detail & Related papers (2025-02-12T04:17:02Z) - Combating Multimodal LLM Hallucination via Bottom-Up Holistic Reasoning [151.4060202671114]
multimodal large language models (MLLMs) have shown unprecedented capabilities in advancing vision-language tasks.
This paper introduces a novel bottom-up reasoning framework to address hallucinations in MLLMs.
Our framework systematically addresses potential issues in both visual and textual inputs by verifying and integrating perception-level information with cognition-level commonsense knowledge.
arXiv Detail & Related papers (2024-12-15T09:10:46Z) - LLM Hallucination Reasoning with Zero-shot Knowledge Test [10.306443936136425]
We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated.
Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning.
arXiv Detail & Related papers (2024-11-14T18:55:26Z) - A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
The existence of hallucinations has limited the potential and practical effectiveness of LVLM in various fields.
The structure of LVLMs and main causes of hallucination generation are introduced.
The available hallucination evaluation benchmarks for LVLMs are presented.
arXiv Detail & Related papers (2024-10-20T10:58:58Z) - Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
This paper proposes Dynamic Retrieval Augmentation based on hallucination Detection (DRAD) as a novel method to detect and mitigate hallucinations in Large Language Models (LLMs)
Experiment results show that DRAD demonstrates superior performance in both detecting and mitigating hallucinations in LLMs.
arXiv Detail & Related papers (2024-07-12T16:47:34Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - Unsupervised Real-Time Hallucination Detection based on the Internal States of Large Language Models [12.27217471495276]
Hallucinations in large language models (LLMs) produce responses that are coherent but factually inaccurate.
We present MIND, an unsupervised training framework that leverages the internal states of LLMs for real-time hallucination detection.
We also present HELM, a new benchmark for evaluating hallucination detection across multiple LLMs.
arXiv Detail & Related papers (2024-03-11T05:51:03Z) - Retrieve Only When It Needs: Adaptive Retrieval Augmentation for Hallucination Mitigation in Large Language Models [68.91592125175787]
Hallucinations pose a significant challenge for the practical implementation of large language models (LLMs)
We present Rowen, a novel approach that enhances LLMs with a selective retrieval augmentation process tailored to address hallucinations.
arXiv Detail & Related papers (2024-02-16T11:55:40Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
This paper introduces a method for automatically constructing model-specific hallucination datasets based on existing fact-checking datasets called AutoHall.
We also propose a zero-resource and black-box hallucination detection method based on self-contradiction.
arXiv Detail & Related papers (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks.
LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge.
arXiv Detail & Related papers (2023-09-03T16:56:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.