論文の概要: Context-Aware Temporal Embedding of Objects in Video Data
- arxiv url: http://arxiv.org/abs/2408.12789v1
- Date: Fri, 23 Aug 2024 01:44:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 16:19:03.060563
- Title: Context-Aware Temporal Embedding of Objects in Video Data
- Title(参考訳): 映像データ中の物体の時間的埋め込み
- Authors: Ahnaf Farhan, M. Shahriar Hossain,
- Abstract要約: ビデオ分析において、時間的コンテキストを理解することは、時間とともにオブジェクトの相互作用、イベントパターン、コンテキストの変化を認識するために不可欠である。
提案モデルは、隣接するビデオフレームからのオブジェクト間の隣接性と意味的類似性を利用して、コンテキスト対応の時間的オブジェクト埋め込みを構築する。
実証実験により、従来の視覚的埋め込みと組み合わせて、文脈対応の時間的埋め込みを利用でき、下流アプリケーションの有効性を高めることができることが示された。
- 参考スコア(独自算出の注目度): 0.8287206589886881
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In video analysis, understanding the temporal context is crucial for recognizing object interactions, event patterns, and contextual changes over time. The proposed model leverages adjacency and semantic similarities between objects from neighboring video frames to construct context-aware temporal object embeddings. Unlike traditional methods that rely solely on visual appearance, our temporal embedding model considers the contextual relationships between objects, creating a meaningful embedding space where temporally connected object's vectors are positioned in proximity. Empirical studies demonstrate that our context-aware temporal embeddings can be used in conjunction with conventional visual embeddings to enhance the effectiveness of downstream applications. Moreover, the embeddings can be used to narrate a video using a Large Language Model (LLM). This paper describes the intricate details of the proposed objective function to generate context-aware temporal object embeddings for video data and showcases the potential applications of the generated embeddings in video analysis and object classification tasks.
- Abstract(参考訳): ビデオ分析において、時間的コンテキストを理解することは、時間とともにオブジェクトの相互作用、イベントパターン、コンテキストの変化を認識するために不可欠である。
提案モデルは、隣接するビデオフレームからのオブジェクト間の隣接性と意味的類似性を利用して、コンテキスト対応の時間的オブジェクト埋め込みを構築する。
視覚的外観にのみ依存する従来の手法とは異なり、我々の時間的埋め込みモデルは、物体間の文脈的関係を考慮し、時間的に連結された物体のベクトルが近接している有意義な埋め込み空間を作成する。
実証実験により、従来の視覚的埋め込みと併用して、文脈対応の時間的埋め込みを用いることで、下流アプリケーションの有効性を高めることができることが示された。
さらに、埋め込みは、Large Language Model (LLM)を使用してビデオをナレーションするために使用することができる。
本稿では,映像データにコンテキスト対応の時間的オブジェクト埋め込みを生成する目的関数の複雑な詳細を述べるとともに,映像解析やオブジェクト分類タスクにおいて生成した埋め込みの潜在的な応用について述べる。
関連論文リスト
- Context Propagation from Proposals for Semantic Video Object Segmentation [1.223779595809275]
本稿では,意味オブジェクトセグメンテーションのためのビデオにおける意味的文脈関係を学習するための新しいアプローチを提案する。
提案手法は,オブジェクトのキー進化と意味時間領域上のオブジェクト間の関係をエンコードするビデオオブジェクトから,セマンティックコンテキストを導出する。
論文 参考訳(メタデータ) (2024-07-08T14:44:18Z) - Video Salient Object Detection via Contrastive Features and Attention
Modules [106.33219760012048]
本稿では,注目モジュールを持つネットワークを用いて,映像の有意な物体検出のためのコントラスト特徴を学習する。
コアテンションの定式化は、低レベル特徴と高レベル特徴を組み合わせるために用いられる。
提案手法は計算量が少なく,最先端の手法に対して良好に動作することを示す。
論文 参考訳(メタデータ) (2021-11-03T17:40:32Z) - Context-LGM: Leveraging Object-Context Relation for Context-Aware Object
Recognition [48.5398871460388]
本稿では,オブジェクト・コンテキスト関係を階層的にモデル化する新しいコンテキスト潜在生成モデル(Contextual Latent Generative Model,Context-LGM)を提案する。
文脈的特徴を推定するために、変数自動エンコーダ(VAE)の目的関数を再構成し、対象物に対する後続条件付き分布として文脈的特徴を学習する。
本手法の有効性は,2つのコンテキスト認識オブジェクト認識タスクにおける最先端性能によって検証される。
論文 参考訳(メタデータ) (2021-10-08T11:31:58Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
ビデオに基づくヒューマンオブジェクトインタラクションシーンでは、人間とオブジェクトの時間的関係をモデル化することが、ビデオに提示されるコンテキスト情報を理解するための重要な手がかりである。
実効時間関係モデリングでは、各フレームの文脈情報を明らかにするだけでなく、時間間の依存関係を直接キャプチャすることもできる。
外観特徴、空間的位置、意味情報のフル活用は、ビデオベースのヒューマンオブジェクトインタラクション認識性能を改善する鍵でもある。
論文 参考訳(メタデータ) (2021-08-19T11:57:27Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
リレーショナル・テンポラル関係を明示的にモデル化するメッセージパッシンググラフニューラルネットワークを提案する。
本手法は,シーン内の関連エンティティ間の関係をより効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2021-03-29T14:37:35Z) - DORi: Discovering Object Relationship for Moment Localization of a
Natural-Language Query in Video [98.54696229182335]
本研究では,自然言語クエリを用いて,時間的モーメントローカライゼーションの課題について検討する。
私たちの重要なイノベーションは、言語で条件付きメッセージパッシングアルゴリズムを通じて、ビデオ機能の埋め込みを学ぶことです。
時間的なサブグラフは、時間を通してビデオ内のアクティビティをキャプチャする。
論文 参考訳(メタデータ) (2020-10-13T09:50:29Z) - Spatio-Temporal Graph for Video Captioning with Knowledge Distillation [50.034189314258356]
空間と時間におけるオブジェクトの相互作用を利用したビデオキャプションのためのグラフモデルを提案する。
我々のモデルは解釈可能なリンクを構築し、明示的な視覚的グラウンドを提供することができる。
オブジェクト数の変動による相関を回避するため,オブジェクト認識型知識蒸留機構を提案する。
論文 参考訳(メタデータ) (2020-03-31T03:58:11Z) - OVC-Net: Object-Oriented Video Captioning with Temporal Graph and Detail
Enhancement [44.228748086927375]
本稿では,ビデオベースのオブジェクト指向ビデオキャプションネットワーク(OVC)-Netを時間グラフと詳細拡張を通じて紹介する。
提案手法の有効性を実証するため,新しいデータセットの実験を行い,最先端のビデオキャプション手法と比較した。
論文 参考訳(メタデータ) (2020-03-08T04:34:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。