Preference Consistency Matters: Enhancing Preference Learning in Language Models with Automated Self-Curation of Training Corpora
- URL: http://arxiv.org/abs/2408.12799v2
- Date: Fri, 31 Jan 2025 09:27:26 GMT
- Title: Preference Consistency Matters: Enhancing Preference Learning in Language Models with Automated Self-Curation of Training Corpora
- Authors: JoonHo Lee, JuYoun Son, Juree Seok, Wooseok Jang, Yeong-Dae Kwon,
- Abstract summary: We introduce a self-curation method that preprocesses annotated datasets by leveraging proxy models trained directly on them.
Our method enhances preference learning by automatically detecting and selecting consistent annotations.
- Score: 4.008122785948581
- License:
- Abstract: Inconsistent annotations in training corpora, particularly within preference learning datasets, pose challenges in developing advanced language models. These inconsistencies often arise from variability among annotators and inherent multi-dimensional nature of the preferences. To address these issues, we introduce a self-curation method that preprocesses annotated datasets by leveraging proxy models trained directly on them. Our method enhances preference learning by automatically detecting and selecting consistent annotations. We validate the proposed approach through extensive instruction-following tasks, demonstrating performance improvements of up to 33\% across various learning algorithms and proxy capabilities. This work offers a straightforward and reliable solution to address preference inconsistencies without relying on heuristics, serving as an initial step toward the development of more advanced preference learning methodologies. Code is available at https://github.com/Self-Curation/ .
Related papers
- Aligning Large Language Models via Self-Steering Optimization [78.42826116686435]
We introduce Self-Steering Optimization ($SSO$), an algorithm that autonomously generates high-quality preference signals.
$SSO$ maintains the accuracy of signals by ensuring a consistent gap between chosen and rejected responses.
We validate the effectiveness of $SSO$ with two foundation models, Qwen2 and Llama3.1, indicating that it provides accurate, on-policy preference signals.
arXiv Detail & Related papers (2024-10-22T16:04:03Z) - Kun: Answer Polishment for Chinese Self-Alignment with Instruction Back-Translation [30.053409671898933]
Kun is a novel approach for creating high-quality instruction-tuning datasets for large language models (LLMs) without relying on manual annotations.
We leverage unlabelled data from diverse sources such as Wudao, Wanjuan, and SkyPile to generate a substantial dataset of over a million Chinese instructional data points.
arXiv Detail & Related papers (2024-01-12T09:56:57Z) - One-Shot Learning as Instruction Data Prospector for Large Language Models [108.81681547472138]
textscNuggets uses one-shot learning to select high-quality instruction data from extensive datasets.
We show that instruction tuning with the top 1% of examples curated by textscNuggets substantially outperforms conventional methods employing the entire dataset.
arXiv Detail & Related papers (2023-12-16T03:33:12Z) - ULMA: Unified Language Model Alignment with Human Demonstration and
Point-wise Preference [16.73260713938154]
A typical alignment procedure consists of supervised fine-tuning and preference learning.
We introduce Point-wise Direct Preference Optimization, a novel preference learning method designed to harness point-wise feedback effectively.
Our work also uncovers a novel connection between supervised fine-tuning and point-wise preference learning, culminating in Unified Language Model Alignment.
arXiv Detail & Related papers (2023-12-05T07:52:12Z) - Unsupervised 3D registration through optimization-guided cyclical
self-training [71.75057371518093]
State-of-the-art deep learning-based registration methods employ three different learning strategies.
We propose a novel self-supervised learning paradigm for unsupervised registration, relying on self-training.
We evaluate the method for abdomen and lung registration, consistently surpassing metric-based supervision and outperforming diverse state-of-the-art competitors.
arXiv Detail & Related papers (2023-06-29T14:54:10Z) - SPEC: Summary Preference Decomposition for Low-Resource Abstractive
Summarization [21.037841262371355]
We present a framework to transfer few-shot learning processes from source corpora to the target corpus.
Our methods achieve state-of-the-art performance on six diverse corpora with 30.11%/33.95%/27.51% and 26.74%/31.14%/24.48% average improvements on ROUGE-1/2/L under 10- and 100-example settings.
arXiv Detail & Related papers (2023-03-24T14:07:03Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Prompt-Learning for Fine-Grained Entity Typing [40.983849729537795]
We investigate the application of prompt-learning on fine-grained entity typing in fully supervised, few-shot and zero-shot scenarios.
We propose a self-supervised strategy that carries out distribution-level optimization in prompt-learning to automatically summarize the information of entity types.
arXiv Detail & Related papers (2021-08-24T09:39:35Z) - Model-agnostic and Scalable Counterfactual Explanations via
Reinforcement Learning [0.5729426778193398]
We propose a deep reinforcement learning approach that transforms the optimization procedure into an end-to-end learnable process.
Our experiments on real-world data show that our method is model-agnostic, relying only on feedback from model predictions.
arXiv Detail & Related papers (2021-06-04T16:54:36Z) - Online Coreset Selection for Rehearsal-based Continual Learning [65.85595842458882]
In continual learning, we store a subset of training examples (coreset) to be replayed later to alleviate catastrophic forgetting.
We propose Online Coreset Selection (OCS), a simple yet effective method that selects the most representative and informative coreset at each iteration.
Our proposed method maximizes the model's adaptation to a target dataset while selecting high-affinity samples to past tasks, which directly inhibits catastrophic forgetting.
arXiv Detail & Related papers (2021-06-02T11:39:25Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
Recent advances in transfer learning for natural language processing in conjunction with active learning open the possibility to significantly reduce the necessary annotation budget.
We conduct an empirical study of various Bayesian uncertainty estimation methods and Monte Carlo dropout options for deep pre-trained models in the active learning framework.
We also demonstrate that to acquire instances during active learning, a full-size Transformer can be substituted with a distilled version, which yields better computational performance.
arXiv Detail & Related papers (2021-01-20T13:59:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.