Exploring Machine Learning Models for Lung Cancer Level Classification: A comparative ML Approach
- URL: http://arxiv.org/abs/2408.12838v1
- Date: Fri, 23 Aug 2024 04:56:36 GMT
- Title: Exploring Machine Learning Models for Lung Cancer Level Classification: A comparative ML Approach
- Authors: Mohsen Asghari Ilani, Saba Moftakhar Tehran, Ashkan Kavei, Hamed Alizadegan,
- Abstract summary: This paper explores machine learning (ML) models for classifying lung cancer levels.
We use minimum child weight and learning rate monitoring to reduce overfitting and optimize performance.
Ensemble methods, including voting and bagging, also showed promise in enhancing predictive accuracy and robustness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper explores machine learning (ML) models for classifying lung cancer levels to improve diagnostic accuracy and prognosis. Through parameter tuning and rigorous evaluation, we assess various ML algorithms. Techniques like minimum child weight and learning rate monitoring were used to reduce overfitting and optimize performance. Our findings highlight the robust performance of Deep Neural Network (DNN) models across all phases. Ensemble methods, including voting and bagging, also showed promise in enhancing predictive accuracy and robustness. However, Support Vector Machine (SVM) models with the Sigmoid kernel faced challenges, indicating a need for further refinement. Overall, our study provides insights into ML-based lung cancer classification, emphasizing the importance of parameter tuning to optimize model performance and improve diagnostic accuracy in oncological care.
Related papers
- Comparative Study of Machine Learning Algorithms in Detecting Cardiovascular Diseases [0.0]
The detection of cardiovascular diseases (CVD) using machine learning techniques represents a significant advancement in medical diagnostics.
This study explores a comparative analysis of various machine learning algorithms, including Logistic Regression, Decision Tree, Random Forest, Gradient Boosting, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and XGBoost.
The findings highlight the efficacy of ensemble methods and advanced algorithms in providing reliable predictions, thereby offering a comprehensive framework for CVD detection.
arXiv Detail & Related papers (2024-05-27T11:29:54Z) - An Evaluation of Machine Learning Approaches for Early Diagnosis of
Autism Spectrum Disorder [0.0]
Autistic Spectrum Disorder (ASD) is a neurological disease characterized by difficulties with social interaction, communication, and repetitive activities.
This study employs diverse machine learning methods to identify crucial ASD traits, aiming to enhance and automate the diagnostic process.
arXiv Detail & Related papers (2023-09-20T21:23:37Z) - Liver Infection Prediction Analysis using Machine Learning to Evaluate
Analytical Performance in Neural Networks by Optimization Techniques [0.0]
This paper deals with various machine learning algorithms on different liver illness datasets to evaluate the analytical performance.
The selected classification algorithms analyze the difference in results and find out the most excellent categorization models for liver disease.
arXiv Detail & Related papers (2023-05-11T14:40:39Z) - Self-Supervised Deep Learning to Enhance Breast Cancer Detection on
Screening Mammography [2.9082470896148425]
We investigate strong augmentation based self-supervised learning (SSL) techniques to address this problem.
Using breast cancer detection as an example, we first identify a mammogram-specific transformation paradigm.
We develop a method to convert a pretrained model from making predictions on uniformly tiled patches to whole images, and an attention-based pooling method that improves the classification performance.
arXiv Detail & Related papers (2022-03-16T03:47:01Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
Plant diseases serve as one of main threats to food security and crop production.
One popular approach is to transform this problem as a leaf image classification task, which can be addressed by the powerful convolutional neural networks (CNNs)
We propose a novel framework that incorporates rectified meta-learning module into common CNN paradigm to train a noise-robust deep network without using extra supervision information.
arXiv Detail & Related papers (2020-03-17T09:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.