Informational Embodiment: Computational role of information structure in codes and robots
- URL: http://arxiv.org/abs/2408.12950v1
- Date: Fri, 23 Aug 2024 09:59:45 GMT
- Title: Informational Embodiment: Computational role of information structure in codes and robots
- Authors: Alexandre Pitti, Kohei Nakajima, Yasuo Kuniyoshi,
- Abstract summary: We address an information theory (IT) account on how the precision of sensors, the accuracy of motors, their placement, the body geometry, shape the information structure in robots and computational codes.
We envision the robot's body as a physical communication channel through which information is conveyed, in and out, despite intrinsic noise and material limitations.
We introduce a special class of efficient codes used in IT that reached the Shannon limits in terms of information capacity for error correction and robustness against noise, and parsimony.
- Score: 48.00447230721026
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The body morphology plays an important role in the way information is perceived and processed by an agent. We address an information theory (IT) account on how the precision of sensors, the accuracy of motors, their placement, the body geometry, shape the information structure in robots and computational codes. As an original idea, we envision the robot's body as a physical communication channel through which information is conveyed, in and out, despite intrinsic noise and material limitations. Following this, entropy, a measure of information and uncertainty, can be used to maximize the efficiency of robot design and of algorithmic codes per se. This is known as the principle of Entropy Maximization (PEM) introduced in biology by Barlow in 1969. The Shannon's source coding theorem provides then a framework to compare different types of bodies in terms of sensorimotor information. In line with PME, we introduce a special class of efficient codes used in IT that reached the Shannon limits in terms of information capacity for error correction and robustness against noise, and parsimony. These efficient codes, which exploit insightfully quantization and randomness, permit to deal with uncertainty, redundancy and compacity. These features can be used for perception and control in intelligent systems. In various examples and closing discussions, we reflect on the broader implications of our framework that we called Informational Embodiment to motor theory and bio-inspired robotics, touching upon concepts like motor synergies, reservoir computing, and morphological computation. These insights can contribute to a deeper understanding of how information theory intersects with the embodiment of intelligence in both natural and artificial systems.
Related papers
- Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
Differentiable simulation has become a powerful tool for system identification.
Our approach calibrates object properties by using information from the robot, without relying on data from the object itself.
We demonstrate the effectiveness of our method on a low-cost robotic platform.
arXiv Detail & Related papers (2024-10-04T20:48:38Z) - Towards Efficient and Trustworthy AI Through
Hardware-Algorithm-Communication Co-Design [32.815326729969904]
State-of-the-art AI models are largely incapable of providing trustworthy measures of their uncertainty.
This paper highlights research directions at the intersection of hardware and software design.
arXiv Detail & Related papers (2023-09-27T18:39:46Z) - A Mathematical Characterization of Minimally Sufficient Robot Brains [4.10609794373612]
We introduce the notion of an information transition system for the internal system.
An information transition system is viewed as a filter and a policy or plan is viewed as a function that labels the states of this information transition system.
We establish, in a general setting, that minimal information transition systems exist up to reasonable equivalence assumptions.
arXiv Detail & Related papers (2023-08-17T15:22:06Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Neuromechanical Autoencoders: Learning to Couple Elastic and Neural
Network Nonlinearity [15.47367187516723]
We seek to develop machine learning analogs of.
mechanical intelligence.
We jointly learn the morphology of complex nonlinear elastic solids along with a.
deep neural network to control it.
arXiv Detail & Related papers (2023-01-31T19:04:28Z) - Neuro-Symbolic Artificial Intelligence (AI) for Intent based Semantic
Communication [85.06664206117088]
6G networks must consider semantics and effectiveness (at end-user) of the data transmission.
NeSy AI is proposed as a pillar for learning causal structure behind the observed data.
GFlowNet is leveraged for the first time in a wireless system to learn the probabilistic structure which generates the data.
arXiv Detail & Related papers (2022-05-22T07:11:57Z) - Symmetry Group Equivariant Architectures for Physics [52.784926970374556]
In the domain of machine learning, an awareness of symmetries has driven impressive performance breakthroughs.
We argue that both the physics community and the broader machine learning community have much to understand.
arXiv Detail & Related papers (2022-03-11T18:27:04Z) - Physical reservoir computing -- An introductory perspective [0.0]
Physical reservoir computing allows one to exploit the complex dynamics of physical systems as information-processing devices.
This paper aims to illustrate the potentials of the framework using examples from soft robotics.
arXiv Detail & Related papers (2020-05-03T05:39:06Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
We instantiate the concept of structure of scientific explanation as the theoretical underpinning for a general framework in which explanations for AI systems can be implemented.
This framework aims to provide the tools to build a "mental-model" of any AI system so that the interaction with the user can provide information on demand and be closer to the nature of human-made explanations.
arXiv Detail & Related papers (2020-03-02T10:32:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.