Multimodal Contrastive In-Context Learning
- URL: http://arxiv.org/abs/2408.12959v1
- Date: Fri, 23 Aug 2024 10:10:01 GMT
- Title: Multimodal Contrastive In-Context Learning
- Authors: Yosuke Miyanishi, Minh Le Nguyen,
- Abstract summary: This paper introduces a novel multimodal contrastive in-context learning framework to enhance our understanding of gradient-free in-context learning (ICL) in Large Language Models (LLMs)
First, we present a contrastive learning-based interpretation of ICL in real-world settings, marking the distance of the key-value representation as the differentiator in ICL.
Second, we develop an analytical framework to address biases in multimodal input formatting for real-world datasets.
Third, we propose an on-the-fly approach for ICL that demonstrates effectiveness in detecting hateful memes.
- Score: 0.9120312014267044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of Large Language Models (LLMs) usage has highlighted the importance of gradient-free in-context learning (ICL). However, interpreting their inner workings remains challenging. This paper introduces a novel multimodal contrastive in-context learning framework to enhance our understanding of ICL in LLMs. First, we present a contrastive learning-based interpretation of ICL in real-world settings, marking the distance of the key-value representation as the differentiator in ICL. Second, we develop an analytical framework to address biases in multimodal input formatting for real-world datasets. We demonstrate the effectiveness of ICL examples where baseline performance is poor, even when they are represented in unseen formats. Lastly, we propose an on-the-fly approach for ICL (Anchored-by-Text ICL) that demonstrates effectiveness in detecting hateful memes, a task where typical ICL struggles due to resource limitations. Extensive experiments on multimodal datasets reveal that our approach significantly improves ICL performance across various scenarios, such as challenging tasks and resource-constrained environments. Moreover, it provides valuable insights into the mechanisms of in-context learning in LLMs. Our findings have important implications for developing more interpretable, efficient, and robust multimodal AI systems, especially in challenging tasks and resource-constrained environments.
Related papers
- True Multimodal In-Context Learning Needs Attention to the Visual Context [69.63677595066012]
Multimodal Large Language Models (MLLMs) have enabled Multimodal In-Context Learning (MICL)-adapting to new tasks.<n>Current MLLMs tend to neglect visual cues and over-rely on textual patterns, leading to mere text imitation rather than genuine multimodal adaptation.<n>We introduce Dynamic Attention Reallocation (DARA), an efficient fine-tuning strategy that encourages models to attend to the visual context.
arXiv Detail & Related papers (2025-07-21T17:08:18Z) - MLLM-CL: Continual Learning for Multimodal Large Language Models [62.90736445575181]
We introduce MLLM-CL, a novel benchmark encompassing domain and ability continual learning.<n>Our approach can integrate domain-specific knowledge and functional abilities with minimal forgetting, significantly outperforming existing methods.
arXiv Detail & Related papers (2025-06-05T17:58:13Z) - Advancing Multimodal In-Context Learning in Large Vision-Language Models with Task-aware Demonstrations [0.0]
Multimodal in-context learning (ICL) has emerged as a key capability of Large Vision-Language Models (LVLMs)
We shed light on the core mechanism underlying multimodal ICL, identifying task mapping as a crucial factor in configuring robust in-context demonstration sequences.
We propose textitSabER, a lightweight yet powerful decoder-only transformer equipped with task-aware attention.
arXiv Detail & Related papers (2025-03-05T16:33:10Z) - Unlocking In-Context Learning for Natural Datasets Beyond Language Modelling [37.36879079951306]
Large Language Models (LLMs) exhibit In-Context Learning (ICL)<n>ICL offers fast adaptation across natural language tasks and domains, but its emergence is less straightforward for modalities beyond text.<n>We identify exact token repetitions in the training data sequences as an important factor for ICL.<n>We unlock ICL capabilities for various visual datasets and a more challenging EEG classification task in a few-shot learning regime.
arXiv Detail & Related papers (2025-01-09T09:45:05Z) - LLM2CLIP: Powerful Language Model Unlocks Richer Visual Representation [72.02635550088546]
This work explores how large language models (LLMs) can enhance CLIP's capability, especially for processing longer and more complex image captions.<n>We introduce a caption-to-caption contrastive fine-tuning framework, significantly enhancing the discriminative quality of LLM outputs.<n>Our approach outperforms LoRA-based methods, achieving nearly fourfold faster training with superior performance.
arXiv Detail & Related papers (2024-11-07T18:59:16Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning [47.82447085244952]
We show that modalities matter differently across tasks in multimodal ICL.
Guided by task-specific modality impact, we recommend modality-driven demonstration strategies to boost ICL performance.
arXiv Detail & Related papers (2024-07-01T01:57:21Z) - What Makes Multimodal In-Context Learning Work? [58.48612721156335]
We present a framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models.
M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality.
We identify several biases and limitations of M-ICL that warrant consideration prior to deployment.
arXiv Detail & Related papers (2024-04-24T08:50:45Z) - Towards Multimodal In-Context Learning for Vision & Language Models [21.69457980865084]
State-of-the-art Vision-Language Models (VLMs) ground the vision and the language modality.
We propose a simple yet surprisingly effective multi-turn curriculum-based learning methodology with effective data mixes.
arXiv Detail & Related papers (2024-03-19T13:53:37Z) - Let's Learn Step by Step: Enhancing In-Context Learning Ability with Curriculum Learning [9.660673938961416]
Demonstration ordering is an important strategy for in-context learning (ICL)
We propose a simple but effective demonstration ordering method for ICL, named the few-shot In-Context Curriculum Learning (ICCL)
arXiv Detail & Related papers (2024-02-16T14:55:33Z) - Data Poisoning for In-context Learning [49.77204165250528]
In-context learning (ICL) has been recognized for its innovative ability to adapt to new tasks.
This paper delves into the critical issue of ICL's susceptibility to data poisoning attacks.
We introduce ICLPoison, a specialized attacking framework conceived to exploit the learning mechanisms of ICL.
arXiv Detail & Related papers (2024-02-03T14:20:20Z) - Towards More Unified In-context Visual Understanding [74.55332581979292]
We present a new ICL framework for visual understanding with multi-modal output enabled.
First, we quantize and embed both text and visual prompt into a unified representational space.
Then a decoder-only sparse transformer architecture is employed to perform generative modeling on them.
arXiv Detail & Related papers (2023-12-05T06:02:21Z) - A Survey on In-context Learning [77.78614055956365]
In-context learning (ICL) has emerged as a new paradigm for natural language processing (NLP)
We first present a formal definition of ICL and clarify its correlation to related studies.
We then organize and discuss advanced techniques, including training strategies, prompt designing strategies, and related analysis.
arXiv Detail & Related papers (2022-12-31T15:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.