From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
- URL: http://arxiv.org/abs/2407.00902v2
- Date: Fri, 18 Oct 2024 04:37:33 GMT
- Title: From Introspection to Best Practices: Principled Analysis of Demonstrations in Multimodal In-Context Learning
- Authors: Nan Xu, Fei Wang, Sheng Zhang, Hoifung Poon, Muhao Chen,
- Abstract summary: We show that modalities matter differently across tasks in multimodal ICL.
Guided by task-specific modality impact, we recommend modality-driven demonstration strategies to boost ICL performance.
- Score: 47.82447085244952
- License:
- Abstract: Motivated by in-context learning (ICL) capabilities of Large Language models (LLMs), multimodal LLMs with additional visual modality are also exhibited with similar ICL abilities when multiple image-text pairs are provided as demonstrations. However, relatively less work has been done to investigate the principles behind how and why multimodal ICL works. We conduct a systematic and principled evaluation of multimodal ICL for models of different scales on a broad spectrum of new yet critical tasks. Through perturbations over different modality information, we show that modalities matter differently across tasks in multimodal ICL. Guided by task-specific modality impact, we recommend modality-driven demonstration strategies to boost ICL performance. We also find that models may follow inductive biases from multimodal ICL even if they are rarely seen in or contradict semantic priors from pretraining data. Our principled analysis provides a comprehensive way of understanding the role of demonstrations in multimodal in-context learning, and sheds light on effectively improving multimodal ICL on a wide range of tasks.
Related papers
- Multimodal Contrastive In-Context Learning [0.9120312014267044]
This paper introduces a novel multimodal contrastive in-context learning framework to enhance our understanding of gradient-free in-context learning (ICL) in Large Language Models (LLMs)
First, we present a contrastive learning-based interpretation of ICL in real-world settings, marking the distance of the key-value representation as the differentiator in ICL.
Second, we develop an analytical framework to address biases in multimodal input formatting for real-world datasets.
Third, we propose an on-the-fly approach for ICL that demonstrates effectiveness in detecting hateful memes.
arXiv Detail & Related papers (2024-08-23T10:10:01Z) - What Makes Multimodal In-Context Learning Work? [58.48612721156335]
We present a framework for investigating Multimodal ICL (M-ICL) in the context of Large Multimodal Models.
M-ICL primarily relies on text-driven mechanisms, showing little to no influence from the image modality.
We identify several biases and limitations of M-ICL that warrant consideration prior to deployment.
arXiv Detail & Related papers (2024-04-24T08:50:45Z) - MMICT: Boosting Multi-Modal Fine-Tuning with In-Context Examples [63.78384552789171]
This paper introduces Multi-Modal In-Context Tuning (MMICT), a novel multi-modal fine-tuning paradigm.
We propose the Multi-Modal Hub (M-Hub), a unified module that captures various multi-modal features according to different inputs and objectives.
Based on M-Hub, MMICT enables MM-LLMs to learn from in-context visual-guided textual features and subsequently generate outputs conditioned on the textual-guided visual features.
arXiv Detail & Related papers (2023-12-11T13:11:04Z) - Retrieval-augmented Multi-modal Chain-of-Thoughts Reasoning for Large
Language Models [56.256069117502385]
Chain of Thought (CoT) approaches can be used to enhance the capability of Large Language Models (LLMs) on complex reasoning tasks.
However, the selection of optimal CoT demonstration examples in multi-modal reasoning remains less explored.
We introduce a novel approach that addresses this challenge by using retrieval mechanisms to automatically select demonstration examples.
arXiv Detail & Related papers (2023-12-04T08:07:21Z) - Understanding and Improving In-Context Learning on Vision-language
Models [42.7212469140844]
In-context learning (ICL) on large language models (LLMs) has received great attention, and this technique can be applied to vision-language models (VLMs)
This study investigates the significance of both visual and language information.
We propose a simple yet effective approach, termed Mixed Modality In-Context Example Selection (MMICES)
arXiv Detail & Related papers (2023-11-29T19:08:11Z) - Lightweight In-Context Tuning for Multimodal Unified Models [57.10831399642176]
MultiModal In-conteXt Tuning (M$2$IXT) is a lightweight module to enhance the ICL capabilities of multimodal unified models.
When tuned on as little as 50K multimodal data, M$2$IXT can boost the few-shot ICL performance significantly.
arXiv Detail & Related papers (2023-10-08T10:47:24Z) - On the Performance of Multimodal Language Models [4.677125897916577]
This study conducts a comparative analysis of different multimodal instruction tuning approaches.
We reveal key insights for guiding architectural choices when incorporating multimodal capabilities into large language models.
arXiv Detail & Related papers (2023-10-04T23:33:36Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
In this study, we introduce a novel two-stage framework to boost in-context learning in large language models (LLMs)
Specifically, our framework delineates the ICL process into two distinct stages: Deep-Thinking and test stages.
The Deep-Thinking stage incorporates a unique attention mechanism, i.e., iterative enhanced attention, which enables multiple rounds of information accumulation.
arXiv Detail & Related papers (2023-05-22T13:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.