論文の概要: RIFF: Inducing Rules for Fraud Detection from Decision Trees
- arxiv url: http://arxiv.org/abs/2408.12989v1
- Date: Fri, 23 Aug 2024 11:14:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:20:16.345494
- Title: RIFF: Inducing Rules for Fraud Detection from Decision Trees
- Title(参考訳): RIFF:決定木からのフラッド検出ルールの導入
- Authors: João Lucas Martins, João Bravo, Ana Sofia Gomes, Carlos Soares, Pedro Bizarro,
- Abstract要約: 本稿では,決定木から直接設定した低偽陽性率ルールを蒸留するルール誘導アルゴリズムRIFFを提案する。
提案実験により,FPRの低いタスクに対して,誘導ルールが元のモデルの性能を維持・改善できることがよく示されている。
- 参考スコア(独自算出の注目度): 5.640162873635426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Financial fraud is the cause of multi-billion dollar losses annually. Traditionally, fraud detection systems rely on rules due to their transparency and interpretability, key features in domains where decisions need to be explained. However, rule systems require significant input from domain experts to create and tune, an issue that rule induction algorithms attempt to mitigate by inferring rules directly from data. We explore the application of these algorithms to fraud detection, where rule systems are constrained to have a low false positive rate (FPR) or alert rate, by proposing RIFF, a rule induction algorithm that distills a low FPR rule set directly from decision trees. Our experiments show that the induced rules are often able to maintain or improve performance of the original models for low FPR tasks, while substantially reducing their complexity and outperforming rules hand-tuned by experts.
- Abstract(参考訳): 金融詐欺は年間数十億ドルの損失の原因である。
伝統的に、不正検出システムは、その透明性と解釈可能性のためにルールに依存している。
しかし、ルールシステムでは、ルール帰納アルゴリズムがデータから直接ルールを推測することによって緩和しようとする問題である、ドメインの専門家からのかなりの入力を作成およびチューニングするために必要である。
本稿では,これらのアルゴリズムの不正検出への応用について検討し,決定木から直接設定された低FPRルールを蒸留するルール誘導アルゴリズムであるRIFFを提案する。
実験の結果,提案手法は,FPRタスクの少ない作業において,元のモデルの性能を維持・改善すると同時に,その複雑さを著しく低減し,専門家が手作業で調整したルールよりも優れることがわかった。
関連論文リスト
- A Scalable Matrix Visualization for Understanding Tree Ensemble Classifiers [20.416696003269674]
本稿では,数万のルールを含む木アンサンブル分類法を説明するために,拡張性のある視覚解析手法を提案する。
我々は,これらのルールを階層レベルで優先順位付けするための,異常バイアスモデル削減手法を開発した。
本手法は,共通ルールと異常ルールの両方を深く理解し,包括性を犠牲にすることなく解釈性を向上させる。
論文 参考訳(メタデータ) (2024-09-05T01:48:11Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Interpretable Outlier Summarization [10.41121739124057]
外乱検出は、ファイナンシャル不正の防止、ネットワーク侵入の防御、差し迫ったデバイス障害の検出など、実際のアプリケーションにおいて極めて重要である。
本稿では,人間の理解可能なルールのコンパクトな集合を学習し,異常検出結果の要約と説明を行うSTAIRを提案する。
以上の結果から,STAIRは外乱検出結果の要約に要するルールの複雑さを著しく低減することが明らかとなった。
論文 参考訳(メタデータ) (2023-03-11T00:53:49Z) - Free Lunch for Generating Effective Outlier Supervision [46.37464572099351]
本稿では, ほぼ現実的な外乱監視を実現するための超効率的な手法を提案する。
提案したtextttBayesAug は,従来の方式に比べて偽陽性率を 12.50% 以上削減する。
論文 参考訳(メタデータ) (2023-01-17T01:46:45Z) - IBP Regularization for Verified Adversarial Robustness via
Branch-and-Bound [85.6899802468343]
IBP-Rは, どちらも簡便なトレーニングアルゴリズムである。
また、$beta$-CROWNに基づく新しいロバスト性であるUPBを提示し、最先端の分岐アルゴリズムのコストを削減する。
論文 参考訳(メタデータ) (2022-06-29T17:13:25Z) - Towards Target Sequential Rules [52.4562332499155]
ターゲット・シーケンシャル・ルール・マイニング(TaSRM)と呼ばれる効率的なアルゴリズムを提案する。
新たなアルゴリズムであるTaSRMとその変種は,既存のベースラインアルゴリズムと比較して実験性能がよいことを示す。
論文 参考訳(メタデータ) (2022-06-09T18:59:54Z) - Decision Rule Elicitation for Domain Adaptation [93.02675868486932]
ヒトインザループ機械学習は、専門家からラベルを引き出すために人工知能(AI)で広く使用されています。
この作業では、専門家が意思決定を説明する決定ルールを作成できるようにします。
決定規則の適用はアルゴリズムのドメイン適応を改善し、専門家の知識をAIモデルに広めるのに役立つことを示す。
論文 参考訳(メタデータ) (2021-02-23T08:07:22Z) - Building Rule Hierarchies for Efficient Logical Rule Learning from
Knowledge Graphs [20.251630903853016]
本稿では,ルール階層を用いて非プロミッシングルールを抽出する新しい手法を提案する。
HPMの応用は非プロムルールの除去に有効であることを示す。
論文 参考訳(メタデータ) (2020-06-29T16:33:30Z) - Towards Learning Instantiated Logical Rules from Knowledge Graphs [20.251630903853016]
本稿では,知識グラフから一階述語論理規則を抽出するために最適化された確率論的学習ルールGPFLを提案する。
GPFLは、抽出された経路を非循環的な抽象規則であるテンプレートに一般化する新しい2段階ルール生成機構を利用する。
オーバーフィッティングルールの存在、予測性能への影響、およびオーバーフィッティングルールをフィルタリングする単純なバリデーション手法の有効性を明らかにする。
論文 参考訳(メタデータ) (2020-03-13T00:32:46Z) - Prediction with Corrupted Expert Advice [67.67399390910381]
ステップサイズを減らした古典的乗法重みアルゴリズムの変種が、良質な環境において絶え間なく後悔することを証明する。
我々の結果は、しばしば同等のFollow the Regularized Leader(FTRL)とOnline Mirror Descent(OMD)フレームワークの驚くべき相違を明らかにします。
論文 参考訳(メタデータ) (2020-02-24T14:39:55Z) - ARMS: Automated rules management system for fraud detection [1.7499351967216341]
オンライン不正検出は、入ってくる取引を合法か不正かのどちらかにリアルタイムで分類する。
現代の不正検出システムは、人間の専門家によって定義された機械学習モデルとルールで構成されている。
本稿では,個々のルールの貢献度を評価する自動ルール管理システムARMSを提案し,検索とユーザ定義の損失関数を用いたアクティブなルールセットを最適化する。
論文 参考訳(メタデータ) (2020-02-14T15:29:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。