論文の概要: A Survey on Drowsiness Detection -- Modern Applications and Methods
- arxiv url: http://arxiv.org/abs/2408.12990v1
- Date: Fri, 23 Aug 2024 11:15:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:20:16.342726
- Title: A Survey on Drowsiness Detection -- Modern Applications and Methods
- Title(参考訳): 眠気検知に関する調査-最近の応用と方法
- Authors: Biying Fu, Fadi Boutros, Chin-Teng Lin, Naser Damer,
- Abstract要約: 眠気検知は、職場や車輪の後ろの安全を確保する上で、最重要事項である。
本総説では,各分野における眠気検知の重要性について概説する。
- 参考スコア(独自算出の注目度): 29.367684013050916
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Drowsiness detection holds paramount importance in ensuring safety in workplaces or behind the wheel, enhancing productivity, and healthcare across diverse domains. Therefore accurate and real-time drowsiness detection plays a critical role in preventing accidents, enhancing safety, and ultimately saving lives across various sectors and scenarios. This comprehensive review explores the significance of drowsiness detection in various areas of application, transcending the conventional focus solely on driver drowsiness detection. We delve into the current methodologies, challenges, and technological advancements in drowsiness detection schemes, considering diverse contexts such as public transportation, healthcare, workplace safety, and beyond. By examining the multifaceted implications of drowsiness, this work contributes to a holistic understanding of its impact and the crucial role of accurate and real-time detection techniques in enhancing safety and performance. We identified weaknesses in current algorithms and limitations in existing research such as accurate and real-time detection, stable data transmission, and building bias-free systems. Our survey frames existing works and leads to practical recommendations like mitigating the bias issue by using synthetic data, overcoming the hardware limitations with model compression, and leveraging fusion to boost model performance. This is a pioneering work to survey the topic of drowsiness detection in such an entirely and not only focusing on one single aspect. We consider the topic of drowsiness detection as a dynamic and evolving field, presenting numerous opportunities for further exploration.
- Abstract(参考訳): 眠気検知は、職場や車輪の後ろでの安全確保、生産性の向上、さまざまな領域での医療において最重要となる。
したがって、事故の防止、安全性の向上、そして最終的には様々な分野やシナリオにおける命を救うために、正確でリアルタイムな眠気検知が重要な役割を担っている。
本総説では,運転者の眠気検出のみに焦点をあて,様々な分野での眠気検出の重要性を概観する。
我々は、公共交通機関、医療、職場の安全など、さまざまな状況を考慮して、生活習慣検出スキームにおける現在の方法論、課題、技術進歩を探求する。
眠気の多面的影響を調べることにより、この研究は、その影響の包括的理解と、安全性と性能を高めるための正確かつリアルタイム検出技術の重要性に寄与する。
我々は、現在のアルゴリズムの弱点と、精度とリアルタイム検出、安定したデータ伝送、バイアスのないシステムの構築といった既存の研究の限界を特定した。
我々の調査は既存の作業の枠組みを定めており、合成データを用いてバイアス問題を軽減し、モデル圧縮によるハードウェア制限を克服し、モデル性能を高めるために融合を活用するなど、実践的なレコメンデーションをもたらしている。
これは、一つの側面にのみ焦点をあてるのではなく、完全に、眠気検出のトピックを調査する先駆的な作業である。
我々は、眠気検出のトピックを動的かつ進化的な分野とみなし、さらなる探索の機会を多く提示する。
関連論文リスト
- Real-Time Drowsiness Detection Using Eye Aspect Ratio and Facial Landmark Detection [0.0]
本研究は、視線量比(EAR)と顔のランドマーク検出技術を用いて、眠気を検出するために設計されたリアルタイムシステムを提案する。
EARのしきい値を確立することで、システムはいつ目を閉じているかを識別し、潜在的な眠気を示す。
実験の結果,システムは低計算要求を維持しながら,高い精度で眠気を確実に検出できることがわかった。
論文 参考訳(メタデータ) (2024-08-11T17:34:24Z) - Pedestrian Detection in Low-Light Conditions: A Comprehensive Survey [2.961140343595394]
歩行者検出は、コンピュータビジョン、監視、自動運転など、様々な領域において重要な問題である。
本研究の目的は,低照度環境を対象とする歩行者検出手法,ベースライン,データセットを包括的に調査することである。
論文 参考訳(メタデータ) (2024-01-15T16:13:17Z) - Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors [57.7003399760813]
先進的なLarge Language Models (LLMs) とその特殊な変種を探索し、いくつかの方法でこの分野に寄与する。
トピックと検出性能の間に有意な相関関係が発見された。
これらの調査は、様々なトピックにまたがるこれらの検出手法の適応性と堅牢性に光を当てた。
論文 参考訳(メタデータ) (2023-12-20T10:53:53Z) - The Last Decade in Review: Tracing the Evolution of Safety Assurance
Cases through a Comprehensive Bibliometric Analysis [7.431812376079826]
安全保証は、自動車、航空宇宙、原子力など、様々な分野において最重要事項である。
安全保証ケースを使用することで、生成されたシステム機能の正しさを検証することができ、システム障害を防止することができる。
論文 参考訳(メタデータ) (2023-11-13T17:34:23Z) - A Comprehensive Survey of Forgetting in Deep Learning Beyond Continual Learning [58.107474025048866]
蓄積とは、以前に獲得した知識の喪失または劣化を指す。
フォッテッティングは、深層学習における様々な研究領域でよく見られる現象である。
論文 参考訳(メタデータ) (2023-07-16T16:27:58Z) - Camera-Radar Perception for Autonomous Vehicles and ADAS: Concepts,
Datasets and Metrics [77.34726150561087]
本研究の目的は、ADASおよび自動運転車のカメラおよびレーダーによる認識の現在のシナリオに関する研究を行うことである。
両センサと融合に関する概念と特徴を提示する。
本稿では、ディープラーニングに基づく検出とセグメンテーションタスクの概要と、車両の認識における主要なデータセット、メトリクス、課題、オープンな質問について説明する。
論文 参考訳(メタデータ) (2023-03-08T00:48:32Z) - Functional Anomaly Detection: a Benchmark Study [4.444788548423704]
異常検出は、非常に高い周波数でサンプリングされた測定に依存することができる。
本研究の目的は, 実データセット上の機能的設定において, 異常検出のための最近の手法の性能について検討することである。
論文 参考訳(メタデータ) (2022-01-13T18:20:32Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習システムの信頼性と安全性を確保するために重要である。
その他の問題として、異常検出(AD)、新規検出(ND)、オープンセット認識(OSR)、異常検出(OD)などがある。
まず、上記の5つの問題を含む一般化OOD検出という統合されたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T17:59:41Z) - Smart Anomaly Detection in Sensor Systems: A Multi-Perspective Review [0.0]
異常検出は、期待される振る舞いから著しく逸脱するデータパターンを特定することに関わる。
データ分析からe-health、サイバーセキュリティ、予測メンテナンス、障害防止、産業自動化に至るまで、幅広いアプリケーション領域があるため、これは重要な研究課題である。
本稿では,センサシステムの特定の領域における異常検出に使用される最先端手法について概説する。
論文 参考訳(メタデータ) (2020-10-27T09:56:16Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
本稿では,センサを用いた人間の活動認識のための最先端のディープラーニング手法について調査する。
まず、官能データのマルチモーダリティを導入し、公開データセットに情報を提供する。
次に、課題によって深層メソッドを構築するための新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-01-21T09:55:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。