論文の概要: EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation
- arxiv url: http://arxiv.org/abs/2408.13005v1
- Date: Fri, 23 Aug 2024 11:48:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 15:20:16.328628
- Title: EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation
- Title(参考訳): EasyControl:制御可能生成と補間のためのビデオ拡散への制御ネット
- Authors: Cong Wang, Jiaxi Gu, Panwen Hu, Haoyu Zhao, Yuanfan Guo, Jianhua Han, Hang Xu, Xiaodan Liang,
- Abstract要約: 本稿では、ビデオ生成のためのEasyControlというユニバーサルフレームワークを提案する。
提案手法により,ユーザーは単一の条件マップで映像生成を制御できる。
その結果,UCF101とMSR-VTTのFVDおよびISが向上した。
- 参考スコア(独自算出の注目度): 73.80275802696815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Following the advancements in text-guided image generation technology exemplified by Stable Diffusion, video generation is gaining increased attention in the academic community. However, relying solely on text guidance for video generation has serious limitations, as videos contain much richer content than images, especially in terms of motion. This information can hardly be adequately described with plain text. Fortunately, in computer vision, various visual representations can serve as additional control signals to guide generation. With the help of these signals, video generation can be controlled in finer detail, allowing for greater flexibility for different applications. Integrating various controls, however, is nontrivial. In this paper, we propose a universal framework called EasyControl. By propagating and injecting condition features through condition adapters, our method enables users to control video generation with a single condition map. With our framework, various conditions including raw pixels, depth, HED, etc., can be integrated into different Unet-based pre-trained video diffusion models at a low practical cost. We conduct comprehensive experiments on public datasets, and both quantitative and qualitative results indicate that our method outperforms state-of-the-art methods. EasyControl significantly improves various evaluation metrics across multiple validation datasets compared to previous works. Specifically, for the sketch-to-video generation task, EasyControl achieves an improvement of 152.0 on FVD and 19.9 on IS, respectively, in UCF101 compared with VideoComposer. For fidelity, our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT compared to other image-to-video models.
- Abstract(参考訳): 安定拡散によるテキスト誘導画像生成技術の進歩に伴い,映像生成は学術界で注目を集めている。
しかし、動画は動画よりもリッチなコンテンツを含んでいるため、動画生成のためのテキストガイダンスのみに依存しているため、深刻な制限がある。
この情報は、平文で適切に記述されることがほとんどない。
幸運なことに、コンピュータビジョンでは、様々な視覚表現が生成を導くための追加の制御信号として機能する。
これらの信号の助けを借りて、ビデオ生成はより細部まで制御でき、異なるアプリケーションに対する柔軟性を高めることができる。
しかし、様々なコントロールを統合することは簡単ではない。
本稿では,EasyControlというユニバーサルフレームワークを提案する。
コンディションアダプタによるコンディション特徴の伝播と注入により,ユーザが単一のコンディションマップでビデオ生成を制御することができる。
本フレームワークでは, 生画素, 深度, HEDなどの様々な条件を, 異なるUnetベースの事前学習ビデオ拡散モデルに統合し, 実用的コストを低く抑えることができる。
我々は,公開データセットに関する総合的な実験を行い,定量的および定性的な結果から,本手法が最先端の手法より優れていることを示す。
EasyControlは、以前の作業と比べて、複数のバリデーションデータセットにわたるさまざまな評価指標を大幅に改善する。
具体的には、スケッチ・ツー・ビデオ生成タスクでは、VideoComposerと比較して、FVDで152.0、ISで19.9の改善がUCF101で達成されている。
その結果,他の画像・映像モデルと比較して,UCF101とMSR-VTTではFVDとISが高い結果が得られた。
関連論文リスト
- AID: Adapting Image2Video Diffusion Models for Instruction-guided Video Prediction [88.70116693750452]
テキスト誘導ビデオ予測(TVP)は、命令に従って、初期フレームから将来のフレームの動きを予測する。
従来のTVP方式では, 安定拡散法を応用して大きなブレークスルーを達成している。
我々は、初期フレームとテキスト命令に基づいて、将来のビデオ状態を予測するためのMLLM(Multi-Modal Large Language Model)を導入する。
論文 参考訳(メタデータ) (2024-06-10T17:02:08Z) - Moonshot: Towards Controllable Video Generation and Editing with
Multimodal Conditions [94.03133100056372]
Moonshotは、画像とテキストのマルチモーダル入力を同時に処理する新しいビデオ生成モデルである。
モデルは、パーソナライズされたビデオ生成、画像アニメーション、ビデオ編集など、様々な生成アプリケーションに容易に再利用できる。
論文 参考訳(メタデータ) (2024-01-03T16:43:47Z) - Fine-grained Controllable Video Generation via Object Appearance and
Context [74.23066823064575]
細粒度制御可能なビデオ生成法(FACTOR)を提案する。
FACTORは、オブジェクトの位置とカテゴリを含む、オブジェクトの外観とコンテキストを制御することを目的としている。
本手法は,オブジェクトの外観を微調整せずに制御し,オブジェクトごとの最適化作業を省く。
論文 参考訳(メタデータ) (2023-12-05T17:47:33Z) - DreamVideo: High-Fidelity Image-to-Video Generation with Image Retention and Text Guidance [69.0740091741732]
本研究では,DreamVideo という名前の事前学習ビデオ拡散モデルに基づくフレーム保持分岐を考案し,高忠実度映像生成手法を提案する。
我々のモデルには強力な画像保持能力があり、我々の知る限り、他の画像-映像モデルと比較して、UCF101で最高の結果をもたらす。
論文 参考訳(メタデータ) (2023-12-05T03:16:31Z) - LAMP: Learn A Motion Pattern for Few-Shot-Based Video Generation [44.220329202024494]
我々は,1つのGPU上で816本の動画でテキストから画像への拡散モデルを学習する,数ショットベースのチューニングフレームワーク LAMP を提案する。
具体的には,コンテンツ生成のための既製のテキスト・ツー・イメージモデルを用いて,第1フレーム条件のパイプラインを設計する。
時間次元の特徴を捉えるため、T2Iモデルの事前訓練された2次元畳み込み層を、新しい時間空間運動学習層に拡張する。
論文 参考訳(メタデータ) (2023-10-16T19:03:19Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Videoは制御可能なT2V拡散モデルであり、テキストプロンプトやエッジや奥行きマップのような参照制御マップに条件付のビデオを生成することができる。
本稿では,拡散に基づく生成プロセスに,コンテンツの事前と動作を組み込む新しい手法を提案する。
我々のフレームワークは、制御可能なテキスト・ツー・ビデオ生成における既存の最先端手法と比較して、高品質で一貫性のあるビデオを生成する。
論文 参考訳(メタデータ) (2023-05-23T09:03:19Z) - TiVGAN: Text to Image to Video Generation with Step-by-Step Evolutionary
Generator [34.7504057664375]
本稿では、フレーム単位で進化し、最終的にフル長のビデオを生成する新しいトレーニングフレームワーク、Text-to-Image-to-Video Generative Adversarial Network (TiVGAN)を提案する。
ステップバイステップの学習プロセスは、トレーニングの安定化を支援し、条件付きテキスト記述に基づく高解像度ビデオの作成を可能にする。
論文 参考訳(メタデータ) (2020-09-04T06:33:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。