I2VControl: Disentangled and Unified Video Motion Synthesis Control
- URL: http://arxiv.org/abs/2411.17765v2
- Date: Sat, 30 Nov 2024 04:50:36 GMT
- Title: I2VControl: Disentangled and Unified Video Motion Synthesis Control
- Authors: Wanquan Feng, Tianhao Qi, Jiawei Liu, Mingzhen Sun, Pengqi Tu, Tianxiang Ma, Fei Dai, Songtao Zhao, Siyu Zhou, Qian He,
- Abstract summary: We present a disentangled and unified framework, namely I2VControl, that unifies multiple motion control tasks in image-to-video synthesis.<n>Our approach partitions the video into individual motion units and represents each unit with disentangled control signals.<n>Our methodology seamlessly integrates as a plug-in for pre-trained models and remains agnostic to specific model architectures.
- Score: 11.83645633418189
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video synthesis techniques are undergoing rapid progress, with controllability being a significant aspect of practical usability for end-users. Although text condition is an effective way to guide video synthesis, capturing the correct joint distribution between text descriptions and video motion remains a substantial challenge. In this paper, we present a disentangled and unified framework, namely I2VControl, that unifies multiple motion control tasks in image-to-video synthesis. Our approach partitions the video into individual motion units and represents each unit with disentangled control signals, which allows for various control types to be flexibly combined within our single system. Furthermore, our methodology seamlessly integrates as a plug-in for pre-trained models and remains agnostic to specific model architectures. We conduct extensive experiments, achieving excellent performance on various control tasks, and our method further facilitates user-driven creative combinations, enhancing innovation and creativity. The project page is: https://wanquanf.github.io/I2VControl .
Related papers
- ATI: Any Trajectory Instruction for Controllable Video Generation [25.249489701215467]
We propose a unified framework for motion control in video generation that seamlessly integrates camera movement, object-level translation, and fine-grained local motion.<n>Our approach offers a cohesive solution by projecting user-defined trajectories into the latent space of pre-trained image-to-video generation models.
arXiv Detail & Related papers (2025-05-28T23:49:18Z) - TokenMotion: Decoupled Motion Control via Token Disentanglement for Human-centric Video Generation [7.900728371180723]
We present TokenMotion, the first DiT-based video diffusion framework that enables fine-grained control over camera motion.
Our approach introduces a unified modeling framework utilizing a decouple-and-fuse strategy, bridged by a human-aware dynamic mask.
Our work represents a significant advancement in controllable video generation, with particular relevance for creative production applications.
arXiv Detail & Related papers (2025-04-11T00:41:25Z) - DC-ControlNet: Decoupling Inter- and Intra-Element Conditions in Image Generation with Diffusion Models [55.42794740244581]
We introduce DC (Decouple)-ControlNet, a framework for multi-condition image generation.<n>The core idea behind DC-ControlNet is to decouple control conditions, transforming global control into a hierarchical system.<n>For interactions between elements, we introduce the Inter-Element Controller.
arXiv Detail & Related papers (2025-02-20T18:01:02Z) - Free-Form Motion Control: A Synthetic Video Generation Dataset with Controllable Camera and Object Motions [78.65431951506152]
We introduce a Synthetic dataset for Free-Form Motion Control (SynFMC)
The proposed SynFMC dataset includes diverse objects and environments and covers various motion patterns according to specific rules.
We further propose a method, Free-Form Motion Control (FMC), which enables independent or simultaneous control of object and camera movements.
arXiv Detail & Related papers (2025-01-02T18:59:45Z) - MotionBridge: Dynamic Video Inbetweening with Flexible Controls [29.029643539300434]
We introduce MotionBridge, a unified video inbetweening framework.
It allows flexible controls, including trajectory strokes, video editing masks, guide pixels, and text video.
We show that such multi-modal controls enable a more dynamic, customizable, and contextually accurate visual narrative.
arXiv Detail & Related papers (2024-12-17T18:59:33Z) - OminiControl: Minimal and Universal Control for Diffusion Transformer [68.3243031301164]
We present OminiControl, a novel approach that rethinks how image conditions are integrated into Diffusion Transformer (DiT) architectures.<n>OminiControl addresses these limitations through three key innovations.
arXiv Detail & Related papers (2024-11-22T17:55:15Z) - EasyControl: Transfer ControlNet to Video Diffusion for Controllable Generation and Interpolation [73.80275802696815]
We propose a universal framework called EasyControl for video generation.
Our method enables users to control video generation with a single condition map.
Our model demonstrates powerful image retention ability, resulting in high FVD and IS in UCF101 and MSR-VTT.
arXiv Detail & Related papers (2024-08-23T11:48:29Z) - AnyControl: Create Your Artwork with Versatile Control on Text-to-Image Generation [24.07613591217345]
Linguistic control enables effective content creation, but struggles with fine-grained control over image generation.
AnyControl develops a novel Multi-Control framework that extracts a unified multi-modal embedding to guide the generation process.
This approach enables a holistic understanding of user inputs, and produces high-quality, faithful results under versatile control signals.
arXiv Detail & Related papers (2024-06-27T07:40:59Z) - Image Conductor: Precision Control for Interactive Video Synthesis [90.2353794019393]
Filmmaking and animation production often require sophisticated techniques for coordinating camera transitions and object movements.
Image Conductor is a method for precise control of camera transitions and object movements to generate video assets from a single image.
arXiv Detail & Related papers (2024-06-21T17:55:05Z) - FreeControl: Training-Free Spatial Control of Any Text-to-Image
Diffusion Model with Any Condition [41.92032568474062]
FreeControl is a training-free approach for controllable T2I generation.
It supports multiple conditions, architectures, and checkpoints simultaneously.
It achieves competitive synthesis quality with training-based approaches.
arXiv Detail & Related papers (2023-12-12T18:59:14Z) - Fine-grained Controllable Video Generation via Object Appearance and
Context [74.23066823064575]
We propose fine-grained controllable video generation (FACTOR) to achieve detailed control.
FACTOR aims to control objects' appearances and context, including their location and category.
Our method achieves controllability of object appearances without finetuning, which reduces the per-subject optimization efforts for the users.
arXiv Detail & Related papers (2023-12-05T17:47:33Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z) - Control-A-Video: Controllable Text-to-Video Diffusion Models with Motion Prior and Reward Feedback Learning [50.60891619269651]
Control-A-Video is a controllable T2V diffusion model that can generate videos conditioned on text prompts and reference control maps like edge and depth maps.
We propose novel strategies to incorporate content prior and motion prior into the diffusion-based generation process.
Our framework generates higher-quality, more consistent videos compared to existing state-of-the-art methods in controllable text-to-video generation.
arXiv Detail & Related papers (2023-05-23T09:03:19Z) - ControlVideo: Training-free Controllable Text-to-Video Generation [117.06302461557044]
ControlVideo is a framework to enable natural and efficient text-to-video generation.
It generates both short and long videos within several minutes using one NVIDIA 2080Ti.
arXiv Detail & Related papers (2023-05-22T14:48:53Z) - UniControl: A Unified Diffusion Model for Controllable Visual Generation
In the Wild [166.25327094261038]
We introduce UniControl, a new generative foundation model for controllable condition-to-image (C2I) tasks.
UniControl consolidates a wide array of C2I tasks within a singular framework, while still allowing for arbitrary language prompts.
trained on nine unique C2I tasks, UniControl demonstrates impressive zero-shot generation abilities.
arXiv Detail & Related papers (2023-05-18T17:41:34Z) - Full-Duplex Strategy for Video Object Segmentation [141.43983376262815]
Full- Strategy Network (FSNet) is a novel framework for video object segmentation (VOS)
Our FSNet performs the crossmodal feature-passing (i.e., transmission and receiving) simultaneously before fusion decoding stage.
We show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.
arXiv Detail & Related papers (2021-08-06T14:50:50Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
We present a framework that synthesizes robust controllers for a quadruped robot.
A high-level controller learns to choose from a set of primitives in response to changes in the environment.
A low-level controller that utilizes an established control method to robustly execute the primitives.
arXiv Detail & Related papers (2020-09-21T16:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.