論文の概要: Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis
- arxiv url: http://arxiv.org/abs/2408.13082v1
- Date: Fri, 23 Aug 2024 14:06:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 14:50:54.442834
- Title: Multivariate Time-Series Anomaly Detection based on Enhancing Graph Attention Networks with Topological Analysis
- Title(参考訳): トポロジ解析によるグラフ注意ネットワークの強化に基づく多変量時系列異常検出
- Authors: Zhe Liu, Xiang Huang, Jingyun Zhang, Zhifeng Hao, Li Sun, Hao Peng,
- Abstract要約: 時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
- 参考スコア(独自算出の注目度): 31.43159668073136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised anomaly detection in time series is essential in industrial applications, as it significantly reduces the need for manual intervention. Multivariate time series pose a complex challenge due to their feature and temporal dimensions. Traditional methods use Graph Neural Networks (GNNs) or Transformers to analyze spatial while RNNs to model temporal dependencies. These methods focus narrowly on one dimension or engage in coarse-grained feature extraction, which can be inadequate for large datasets characterized by intricate relationships and dynamic changes. This paper introduces a novel temporal model built on an enhanced Graph Attention Network (GAT) for multivariate time series anomaly detection called TopoGDN. Our model analyzes both time and feature dimensions from a fine-grained perspective. First, we introduce a multi-scale temporal convolution module to extract detailed temporal features. Additionally, we present an augmented GAT to manage complex inter-feature dependencies, which incorporates graph topology into node features across multiple scales, a versatile, plug-and-play enhancement that significantly boosts the performance of GAT. Our experimental results confirm that our approach surpasses the baseline models on four datasets, demonstrating its potential for widespread application in fields requiring robust anomaly detection. The code is available at https://github.com/ljj-cyber/TopoGDN.
- Abstract(参考訳): 時系列における教師なし異常検出は、手動による介入の必要性を大幅に低減するため、産業応用において不可欠である。
多変量時系列はその特徴と時間次元のために複雑に挑戦する。
従来の手法では、グラフニューラルネットワーク(GNN)やトランスフォーマーを使用して空間を解析し、RNNは時間的依存をモデル化していた。
これらの手法は1次元に狭く焦点を絞ったり、粗い特徴抽出に関わったりしており、複雑な関係や動的変化を特徴とする大規模なデータセットには不十分である。
本稿では,TopoGDNと呼ばれる多変量時系列異常検出のための拡張グラフ注意ネットワーク(GAT)上に構築された新しい時間モデルを提案する。
我々のモデルは細かな視点から時間次元と特徴次元を解析する。
まず、詳細な時間的特徴を抽出するマルチスケールの時間的畳み込みモジュールを提案する。
さらに,複数スケールのノード機能にグラフトポロジを組み込んだ複雑な機能間依存関係を管理するための拡張GATを提案する。
実験結果から,本手法が4つのデータセットのベースラインモデルを上回ることが確認され,ロバストな異常検出を必要とする分野への応用の可能性が確認された。
コードはhttps://github.com/ljj-cyber/TopoGDNで公開されている。
関連論文リスト
- Hypergraph-based multi-scale spatio-temporal graph convolution network for Time-Series anomaly detection [8.878898677348086]
多次元時系列異常検出技術は、航空宇宙、水処理、クラウドサービスプロバイダなど、多くの分野において重要な役割を果たす。
高次元および複雑なデータセットにおいて、効果的かつ正確な異常検出を行うことがますます困難になっている。
本稿では,複数変数間の高次マルチホップ相関を明示的に捉えるハイパーグラフに基づく時間グラフ畳み込みネットワークモデルSTGCN_Hyperを提案する。
我々のモデルはデータ中のマルチスケール時系列の特徴と特徴間の依存関係を柔軟に学習し、異常検出の精度、リコール、F1スコアで既存のベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-10-29T17:19:18Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
本研究では,階層化されたTime2vec埋め込み,動的グラフCNN,Transformerを統合し,グローバルかつ局所的な空間時間情報を抽出する新たな異常検出手法EdgeConvFormerを提案する。
実験により、EdgeConvFormerは、多変量時系列データから時空間モデリングを学習し、異なるスケールの多くの実世界のデータセットに対する最先端のアプローチよりも優れた異常検出性能を得ることができることが示された。
論文 参考訳(メタデータ) (2023-12-04T08:38:54Z) - FourierGNN: Rethinking Multivariate Time Series Forecasting from a Pure
Graph Perspective [48.00240550685946]
現在の最先端グラフニューラルネットワーク(GNN)ベースの予測手法は、通常、シリーズ間(空間)のダイナミックスとシリーズ内(時間)の依存関係をキャプチャするために、グラフネットワーク(GCNなど)と時間ネットワーク(LSTMなど)の両方を必要とする。
提案するフーリエグラフ演算子(FGO)を積み重ねて,フーリエ空間で行列乗算を行うことにより,新しいフーリエグラフニューラルネットワーク(FourierGNN)を提案する。
7つのデータセットに対する実験は、より効率が良く、パラメータも少ないという優れた性能を示した。
論文 参考訳(メタデータ) (2023-11-10T17:13:26Z) - Correlation-aware Spatial-Temporal Graph Learning for Multivariate
Time-series Anomaly Detection [67.60791405198063]
時系列異常検出のための相関対応時空間グラフ学習(CST-GL)を提案する。
CST-GLは、多変量時系列相関学習モジュールを介してペアの相関を明示的にキャプチャする。
新規な異常スコアリング成分をCST-GLにさらに統合し、純粋に教師なしの方法で異常の度合いを推定する。
論文 参考訳(メタデータ) (2023-07-17T11:04:27Z) - Networked Time Series Imputation via Position-aware Graph Enhanced
Variational Autoencoders [31.953958053709805]
我々は,変分オートエンコーダ(VAE)を利用して,ノード時系列の特徴とグラフ構造の両方に欠落する値を予測するPoGeVonという新しいモデルを設計する。
実験の結果,ベースライン上でのモデルの有効性が示された。
論文 参考訳(メタデータ) (2023-05-29T21:11:34Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFIは自動的に多変量特徴相互作用グラフを構築し、グラフ畳み込みニューラルネットワークを使用して高次特徴相互作用を実現する。
3つの公開データセットの実験は、最先端のアプローチと比較して、我々のフレームワークの優位性を示している。
論文 参考訳(メタデータ) (2021-06-11T04:57:03Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
本研究では,空間情報を用いた複雑な多次元時系列データを処理するための新しいディープセルリカレントニューラルネットワーク(DCRNN)アーキテクチャを提案する。
提案するアーキテクチャは,文献に比較して,学習可能なパラメータをかなり少なくしつつ,最先端の性能を実現している。
論文 参考訳(メタデータ) (2021-01-12T20:08:18Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。