論文の概要: Dynamic Label Adversarial Training for Deep Learning Robustness Against Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2408.13102v1
- Date: Fri, 23 Aug 2024 14:25:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 14:50:54.419532
- Title: Dynamic Label Adversarial Training for Deep Learning Robustness Against Adversarial Attacks
- Title(参考訳): 対人攻撃に対する深層学習ロバストネスのための動的ラベル反転訓練
- Authors: Zhenyu Liu, Haoran Duan, Huizhi Liang, Yang Long, Vaclav Snasel, Guiseppe Nicosia, Rajiv Ranjan, Varun Ojha,
- Abstract要約: 対人訓練は、モデルの堅牢性を高める最も効果的な方法の1つである。
従来のアプローチでは、主に敵の訓練に静的接地真理を用いるが、しばしば強固なオーバーフィッティングを引き起こす。
本稿では,動的ラベル対逆トレーニング(DYNAT)アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 11.389689242531327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training is one of the most effective methods for enhancing model robustness. Recent approaches incorporate adversarial distillation in adversarial training architectures. However, we notice two scenarios of defense methods that limit their performance: (1) Previous methods primarily use static ground truth for adversarial training, but this often causes robust overfitting; (2) The loss functions are either Mean Squared Error or KL-divergence leading to a sub-optimal performance on clean accuracy. To solve those problems, we propose a dynamic label adversarial training (DYNAT) algorithm that enables the target model to gradually and dynamically gain robustness from the guide model's decisions. Additionally, we found that a budgeted dimension of inner optimization for the target model may contribute to the trade-off between clean accuracy and robust accuracy. Therefore, we propose a novel inner optimization method to be incorporated into the adversarial training. This will enable the target model to adaptively search for adversarial examples based on dynamic labels from the guiding model, contributing to the robustness of the target model. Extensive experiments validate the superior performance of our approach.
- Abstract(参考訳): 対人訓練は、モデルの堅牢性を高める最も効果的な方法の1つである。
近年のアプローチでは, 対向蒸留が対向訓練アーキテクチャに取り入れられている。
しかし,(1) 従来の手法では, 敵の訓練に静的接地真理を主に用いていたが, しばしば強靭なオーバーフィッティングが生じる。(2) 損失関数は, 平均二乗誤差あるいはKL偏差であり, クリーンな精度で準最適性能をもたらす。
これらの問題を解決するために,動的ラベル逆トレーニング(DYNAT)アルゴリズムを提案する。
さらに,対象モデルに対する内部最適化の予算化次元が,クリーンな精度とロバストな精度のトレードオフに寄与することを発見した。
そこで本稿では,新たな内的最適化手法を提案する。
これにより、ターゲットモデルは、誘導モデルから動的ラベルに基づいて、敵の例を適応的に探索することができ、ターゲットモデルの堅牢性に寄与する。
大規模な実験により、我々のアプローチの優れた性能が検証された。
関連論文リスト
- Module-wise Adaptive Adversarial Training for End-to-end Autonomous Driving [33.90341803416033]
エンドツーエンドの自律運転モデルのためのモジュールワイド適応適応適応訓練(MA2T)を提案する。
本稿では,異なるモジュールが入力される前にノイズを注入するモジュールワイドノイズインジェクションについて紹介する。
また,各モジュールの損失重みを適応的に学習・調整するために,蓄積した重み変化を組み込んだ動的重み蓄積適応を導入する。
論文 参考訳(メタデータ) (2024-09-11T15:00:18Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
アドリラルロバスト性は、ニューラルネットワークをエンコードする難しい性質として伝統的に信じられてきた。
データを使わずに敵の堅牢性を実現するために,スケーラブルでモデルに依存しないソリューションを開発した。
論文 参考訳(メタデータ) (2024-07-26T10:49:14Z) - Learn from the Past: A Proxy Guided Adversarial Defense Framework with
Self Distillation Regularization [53.04697800214848]
敵対的訓練(AT)は、ディープラーニングモデルの堅牢性を固める上で重要な要素である。
AT方式は、目標モデルの防御のために直接反復的な更新を頼りにしており、不安定な訓練や破滅的なオーバーフィッティングといった障害に頻繁に遭遇する。
汎用プロキシガイド型防衛フレームワークLAST(bf Pbf astから学ぶ)を提案する。
論文 参考訳(メタデータ) (2023-10-19T13:13:41Z) - Introducing Foundation Models as Surrogate Models: Advancing Towards
More Practical Adversarial Attacks [15.882687207499373]
箱なしの敵攻撃は、AIシステムにとってより実用的で難しいものになりつつある。
本稿では,サロゲートモデルとして基礎モデルを導入することにより,逆攻撃を下流タスクとして再放送する。
論文 参考訳(メタデータ) (2023-07-13T08:10:48Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Adversarial Fine-tune with Dynamically Regulated Adversary [27.034257769448914]
健康診断や自律手術ロボットなどの現実世界の多くの応用において、このような極めて悪意のある攻撃に対するモデルロバスト性よりも、標準的な性能が重視されている。
本研究は, モデル標準性能に対する対向サンプルの負の効果を阻害する, 単純かつ効果的な移動学習に基づく対向学習戦略を提案する。
さらに,トレーニングの複雑さを伴わずに,敵の強靭性を向上する訓練フレンドリーな敵攻撃アルゴリズムを導入する。
論文 参考訳(メタデータ) (2022-04-28T00:07:15Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
敵の訓練は、あらゆる種類の防衛方法において、様々な敵の攻撃に対する最強の戦略である。
最近の研究は主に新しい損失関数や正規化器の開発に重点を置いており、重み空間の特異な最適点を見つけようとしている。
我々は,歴史モデルの重みを平均化し,頑健な分類器を生成するための,単純だが強力なemphSelf-Ensemble Adversarial Training (SEAT)法を考案した。
論文 参考訳(メタデータ) (2022-03-18T01:12:18Z) - Self-Progressing Robust Training [146.8337017922058]
敵対的なトレーニングのような現在の堅牢なトレーニング方法は、敵対的な例を生成するために「攻撃」を明示的に使用します。
我々はSPROUTと呼ばれる自己プログレッシブ・ロバスト・トレーニングのための新しいフレームワークを提案する。
その結果,スケーラブルで効果的で攻撃に依存しないロバストなトレーニング手法に新たな光を当てた。
論文 参考訳(メタデータ) (2020-12-22T00:45:24Z) - Adversarial Concurrent Training: Optimizing Robustness and Accuracy
Trade-off of Deep Neural Networks [13.041607703862724]
ミニマックスゲームにおいて,自然モデルと連動して頑健なモデルを訓練するための適応的並行訓練(ACT)を提案する。
ACTは標準精度68.20%、目標外攻撃で44.29%のロバスト性を達成している。
論文 参考訳(メタデータ) (2020-08-16T22:14:48Z) - Improved Adversarial Training via Learned Optimizer [101.38877975769198]
対戦型トレーニングモデルの堅牢性を改善するための枠組みを提案する。
共学習のパラメータモデルの重み付けにより、提案するフレームワークは、更新方向に対するロバスト性とステップの適応性を一貫して改善する。
論文 参考訳(メタデータ) (2020-04-25T20:15:53Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
逆行訓練(AT)は、逆行例によるトレーニングデータを増やすことにより、モデルロバスト性を改善する最も効果的な手法の一つである。
既存のAT手法の多くは、敵の例を作らせるために特定の攻撃を採用しており、他の目に見えない攻撃に対する信頼性の低い堅牢性につながっている。
本稿では,ロバストモデル学習のための新しいフレームワークであるADTを紹介する。
論文 参考訳(メタデータ) (2020-02-14T12:36:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。