論文の概要: Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning
- arxiv url: http://arxiv.org/abs/2408.13184v2
- Date: Tue, 27 Aug 2024 03:27:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 18:11:54.245147
- Title: Can LLM be a Good Path Planner based on Prompt Engineering? Mitigating the Hallucination for Path Planning
- Title(参考訳): LLMはプロンプト工学に基づく良いパスプランナーになれるか?
- Authors: Hourui Deng, Hongjie Zhang, Jie Ou, Chaosheng Feng,
- Abstract要約: 本研究では、空間-関係変換とカリキュラムQ-Learning(S2RCQL)という革新的なモデルを提案する。
そこで我々は,Qラーニングに基づく経路計画アルゴリズムを設計し,文脈不整合の幻覚を緩和する。
プロンプトの補助情報として状態反応のQ-値を用いて,LLMの幻覚を補正する。
- 参考スコア(独自算出の注目度): 2.313664320808389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial reasoning in Large Language Models (LLMs) is the foundation for embodied intelligence. However, even in simple maze environments, LLMs still encounter challenges in long-term path-planning, primarily influenced by their spatial hallucination and context inconsistency hallucination by long-term reasoning. To address this challenge, this study proposes an innovative model, Spatial-to-Relational Transformation and Curriculum Q-Learning (S2RCQL). To address the spatial hallucination of LLMs, we propose the Spatial-to-Relational approach, which transforms spatial prompts into entity relations and paths representing entity relation chains. This approach fully taps the potential of LLMs in terms of sequential thinking. As a result, we design a path-planning algorithm based on Q-learning to mitigate the context inconsistency hallucination, which enhances the reasoning ability of LLMs. Using the Q-value of state-action as auxiliary information for prompts, we correct the hallucinations of LLMs, thereby guiding LLMs to learn the optimal path. Finally, we propose a reverse curriculum learning technique based on LLMs to further mitigate the context inconsistency hallucination. LLMs can rapidly accumulate successful experiences by reducing task difficulty and leveraging them to tackle more complex tasks. We performed comprehensive experiments based on Baidu's self-developed LLM: ERNIE-Bot 4.0. The results showed that our S2RCQL achieved a 23%--40% improvement in both success and optimality rates compared with advanced prompt engineering.
- Abstract(参考訳): 大規模言語モデル(LLM)における空間的推論は、インテリジェンスを具現化する基盤である。
しかし、単純な迷路環境においても、LLMは長期的な経路計画の課題に直面しており、その主な影響は、空間幻覚と長期的推論による文脈的不整合幻覚である。
そこで本研究では,空間-関係変換とカリキュラムQ-Learning(S2RCQL)という,革新的なモデルを提案する。
LLMの空間幻覚に対処するために、空間的プロンプトを実体関係と実体関係チェーンを表す経路に変換する空間-相対的アプローチを提案する。
このアプローチは、逐次的思考の観点から LLM の可能性を完全に活用する。
その結果,LLMの推論能力を高める文脈不整合幻覚を軽減するため,Qラーニングに基づく経路計画アルゴリズムを設計した。
状態反応のQ-値を補助情報としてLLMの幻覚を補正し、LLMに最適な経路を学習させる。
最後に,LLMに基づく逆カリキュラム学習手法を提案する。
LLMは、タスクの難しさを減らし、より複雑なタスクに取り組むためにそれらを活用することで、成功するエクスペリエンスを迅速に蓄積することができる。
Baidu の自己開発 LLM: ERNIE-Bot 4.0 に基づいた総合実験を行った。
その結果、我々のS2RCQLは、高度なプロンプトエンジニアリングと比較して、成功率と最適率の両方で23%--40%改善したことがわかった。
関連論文リスト
- LLM The Genius Paradox: A Linguistic and Math Expert's Struggle with Simple Word-based Counting Problems [28.72485319617863]
LLMは、人間が扱いやすいようないくつかの基本的なタスク、例えば単語トラウベリーの文字数rを数えるのに苦労する。
我々は,高度な数学的およびコーディング推論能力の伝達可能性について,特殊なLCMから単純なカウントタスクまでの測定を行う。
微調整や文脈内学習といった戦略と比較すると、係り受け推論はLLMのタスクをより知覚するのに役立つ最も堅牢で効率的な方法であることがわかる。
論文 参考訳(メタデータ) (2024-10-18T04:17:16Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Can LLMs Compute with Reasons? [4.995189458714599]
大規模言語モデル(LLM)は複雑な数学的タスクに苦しむことが多く、誤った答えを「幻覚させる」傾向がある。
本研究では,Small LangSLMの分散ネットワークを利用した「帰納学習」手法を提案する。
論文 参考訳(メタデータ) (2024-02-19T12:04:25Z) - LLMs Can't Plan, But Can Help Planning in LLM-Modulo Frameworks [18.068035947969044]
計画と推論タスクにおけるLLM(Large Language Models)の役割には、かなりの混乱がある。
自己回帰型LSMは、それ自体で計画や自己検証を行うことはできない、と我々は主張する。
本稿では,LLMの強みと外部モデルベース検証器を併用した bf LLM-Modulo Framework のビジョンを提案する。
論文 参考訳(メタデータ) (2024-02-02T14:43:18Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
実用的で影響力のある応用がいくつかあるので、長文質問応答(LFQA)に焦点を当てる。
本稿では,要約の要約から質問生成手法を提案し,長い文書の要約からフォローアップ質問を生成することで,困難な設定を実現できることを示す。
論文 参考訳(メタデータ) (2023-09-15T07:22:56Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
本稿では、情報検索(IR)とLarge Language Model(LLM)のインタラクションのための、textbfSearch-in-the-Chain(SearChain)という新しいフレームワークを提案する。
実験の結果、SearChainは複雑な知識集約タスクにおける最先端のベースラインを上回っていることがわかった。
論文 参考訳(メタデータ) (2023-04-28T10:15:25Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。