論文の概要: Domain-specific long text classification from sparse relevant information
- arxiv url: http://arxiv.org/abs/2408.13253v1
- Date: Fri, 23 Aug 2024 17:54:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-26 14:11:01.012883
- Title: Domain-specific long text classification from sparse relevant information
- Title(参考訳): 疎関連情報からのドメイン固有長文分類
- Authors: Célia D'Cruz, Jean-Marc Bereder, Frédéric Precioso, Michel Riveill,
- Abstract要約: 本稿では,候補文の検索に候補単語の短いリストを利用する階層モデルを提案する。
用語(s)埋め込みのプーリングは、分類される文書表現を必要とする。
より狭い階層モデルは、ドメイン固有のコンテキストで関連する長いドキュメントを取得するために、より大きな言語モデルよりも優れていることを示す。
- 参考スコア(独自算出の注目度): 3.3611255314174815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models have undoubtedly revolutionized the Natural Language Processing field, the current trend being to promote one-model-for-all tasks (sentiment analysis, translation, etc.). However, the statistical mechanisms at work in the larger language models struggle to exploit the relevant information when it is very sparse, when it is a weak signal. This is the case, for example, for the classification of long domain-specific documents, when the relevance relies on a single relevant word or on very few relevant words from technical jargon. In the medical domain, it is essential to determine whether a given report contains critical information about a patient's condition. This critical information is often based on one or few specific isolated terms. In this paper, we propose a hierarchical model which exploits a short list of potential target terms to retrieve candidate sentences and represent them into the contextualized embedding of the target term(s) they contain. A pooling of the term(s) embedding(s) entails the document representation to be classified. We evaluate our model on one public medical document benchmark in English and on one private French medical dataset. We show that our narrower hierarchical model is better than larger language models for retrieving relevant long documents in a domain-specific context.
- Abstract(参考訳): 大規模言語モデルは、間違いなく自然言語処理の分野に革命をもたらした。
しかし、より大きな言語モデルで働いている統計的メカニズムは、弱い信号であるとき、非常に疎いとき、関連する情報を利用するのに苦労する。
これは例えば、長いドメイン固有の文書の分類において、関連性が単一の関連語または技術的な用語のごくわずかな関連語に依存する場合である。
医療分野では、ある報告が患者の状態に関する重要な情報を含んでいるかどうかを判断することが不可欠である。
この臨界情報は、しばしば1つまたは少数の特定の孤立項に基づいている。
本稿では,候補文を検索し,それらを含む対象語(s)の文脈的埋め込みに表現するために,潜在的対象語の短いリストを利用する階層モデルを提案する。
用語(s)埋め込みのプーリングは、分類される文書表現を必要とする。
我々は、英語の公開医療文書ベンチマークとフランスの民間医療データセットを用いて、我々のモデルを評価した。
より狭い階層モデルは、ドメイン固有のコンテキストで関連する長いドキュメントを取得するために、より大きな言語モデルよりも優れていることを示す。
関連論文リスト
- Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
最近の基礎言語モデルでは、ゼロショットや少数ショットの設定で多くのNLPタスクで最先端のパフォーマンスが示されている。
より標準的なアプローチよりもこれらのモデルの利点は、自然言語(prompts)で書かれた命令を理解する能力である。
これにより、アノテーション付きインスタンスが限られているドメインのテキスト分類問題に対処するのに適している。
論文 参考訳(メタデータ) (2024-03-26T12:47:39Z) - Enhancing Medical Specialty Assignment to Patients using NLP Techniques [0.0]
本稿では,計算効率を向上しつつ,優れた性能を実現する方法を提案する。
具体的には、キーワードを用いて、大規模なテキストコーパスで事前訓練された言語モデルより優れたディープラーニングアーキテクチャを訓練する。
その結果,テキスト分類におけるキーワードの利用により,分類性能が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2023-12-09T14:13:45Z) - Lost in the Middle: How Language Models Use Long Contexts [88.78803442320246]
本研究では,言語モデルの性能を2つのタスクで解析する。
関連する情報の位置を変えると,性能が著しく低下することがわかった。
我々の分析は、言語モデルが入力コンテキストをどのように使用するかをよりよく理解し、将来の長文言語モデルのための新しい評価プロトコルを提供する。
論文 参考訳(メタデータ) (2023-07-06T17:54:11Z) - Topics in the Haystack: Extracting and Evaluating Topics beyond
Coherence [0.0]
本稿では,文と文書のテーマを深く理解する手法を提案する。
これにより、一般的な単語やネオロジズムを含む潜在トピックを検出することができる。
本稿では, 侵入者の単語の人間識別と相関係数を示し, 単語侵入作業において, ほぼ人間レベルの結果を得る。
論文 参考訳(メタデータ) (2023-03-30T12:24:25Z) - The Fellowship of the Authors: Disambiguating Names from Social Network
Context [2.3605348648054454]
各エンティティに関する広範なテキスト記述を持つオーソリティリストは、欠落しており、曖昧な名前のエンティティである。
BERTをベースとした参照表現と,さまざまなグラフ誘導戦略を組み合わせて,教師付きクラスタ推論手法と教師なしクラスタ推論手法を実験する。
ドメイン内言語モデルの事前学習は,特により大きなコーパスに対して,参照表現を大幅に改善できることがわかった。
論文 参考訳(メタデータ) (2022-08-31T21:51:55Z) - Author Clustering and Topic Estimation for Short Texts [69.54017251622211]
同じ文書中の単語間の強い依存をモデル化することにより、遅延ディリクレ割当を拡張できる新しいモデルを提案する。
同時にユーザをクラスタ化し、ホック後のクラスタ推定の必要性を排除しています。
我々の手法は、短文で生じる問題に対する従来のアプローチよりも、-または----------- で機能する。
論文 参考訳(メタデータ) (2021-06-15T20:55:55Z) - Sentiment analysis in tweets: an assessment study from classical to
modern text representation models [59.107260266206445]
Twitterで公開された短いテキストは、豊富な情報源として大きな注目を集めている。
非公式な言語スタイルや騒々しい言語スタイルといったそれらの固有の特徴は、多くの自然言語処理(NLP)タスクに挑戦し続けている。
本研究では,22データセットの豊富なコレクションを用いて,ツイートに表される感情を識別する既存言語モデルの評価を行った。
論文 参考訳(メタデータ) (2021-05-29T21:05:28Z) - XL-WiC: A Multilingual Benchmark for Evaluating Semantic
Contextualization [98.61159823343036]
単語の意味を正確にモデル化する能力を評価するために,Word-in-Context データセット (WiC) を提案する。
我々は、XL-WiCという大規模なマルチ言語ベンチマークを提案し、12の新しい言語でゴールドスタンダードを特徴付けました。
実験結果から、ターゲット言語にタグ付けされたインスタンスが存在しない場合でも、英語データのみにトレーニングされたモデルは、競争力のあるパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2020-10-13T15:32:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。