An IoT Framework for Building Energy Optimization Using Machine Learning-based MPC
- URL: http://arxiv.org/abs/2408.13294v1
- Date: Fri, 23 Aug 2024 14:38:18 GMT
- Title: An IoT Framework for Building Energy Optimization Using Machine Learning-based MPC
- Authors: Aryan Morteza, Hosein K. Nazari, Peyman Pahlevani,
- Abstract summary: This study proposes a machine learning-based Model Predictive Control (MPC) approach for controlling Air Handling Unit (AHU) systems by employing an Internet of Things (IoT) framework.
The proposed framework utilizes an Artificial Neural Network (ANN) to provide dynamic-linear thermal model parameters considering building information and disturbances in real time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study proposes a machine learning-based Model Predictive Control (MPC) approach for controlling Air Handling Unit (AHU) systems by employing an Internet of Things (IoT) framework. The proposed framework utilizes an Artificial Neural Network (ANN) to provide dynamic-linear thermal model parameters considering building information and disturbances in real time, thereby facilitating the practical MPC of the AHU system. The proposed framework allows users to establish new setpoints for a closed-loop control system, enabling customization of the thermal environment to meet individual needs with minimal use of the AHU. The experimental results demonstrate the cost benefits of the proposed machine-learning-based MPC-IoT framework, achieving a 57.59\% reduction in electricity consumption compared with a clock-based manual controller while maintaining a high level of user satisfaction. The proposed framework offers remarkable flexibility and effectiveness, even in legacy systems with limited building information, making it a pragmatic and valuable solution for enhancing the energy efficiency and user comfort in pre-existing structures.
Related papers
- Empowering IoT Applications with Flexible, Energy-Efficient Remote Management of Low-Power Edge Devices [0.0]
This paper introduces a novel approach for fine-grained monitoring and managing individual micro-services within low-power edge devices.
The proposed method enables operational flexibility for IoT edge devices by leveraging a modularization technique.
arXiv Detail & Related papers (2024-04-26T10:04:22Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - An LLM-Based Digital Twin for Optimizing Human-in-the Loop Systems [13.388869442538399]
We present a case study that employs large language models (LLMs) to mimic the behaviors and thermal preferences of various population groups in a shopping mall.
The aggregated thermal preferences are integrated into an agent-in-the-loop based reinforcement learning algorithm AitL-RL.
Our results show that LLMs are capable of simulating complex population movements within large open spaces.
arXiv Detail & Related papers (2024-03-25T14:32:28Z) - Efficient Data-Driven MPC for Demand Response of Commercial Buildings [0.0]
We propose a data-driven and mixed-integer bidding strategy for energy management in small commercial buildings.
We consider rooftop unit heating, air conditioning systems with discrete controls to accurately model the operation of most commercial buildings.
We apply our approach in several demand response (DR) settings, including a time-of-use, and a critical rebate bidding.
arXiv Detail & Related papers (2024-01-28T20:01:44Z) - Empowering Aggregators with Practical Data-Driven Tools: Harnessing Aggregated and Disaggregated Flexibility for Demand Response [37.69303106863453]
This study explores the interaction between aggregators and building occupants in activating flexibility through Demand Response (DR) programs.
It introduces a methodology of optimizing aggregated flexibility provision strategies in environments with limited data.
arXiv Detail & Related papers (2024-01-19T14:43:04Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.