Reservoir computing for system identification and predictive control with limited data
- URL: http://arxiv.org/abs/2411.05016v1
- Date: Wed, 23 Oct 2024 21:59:07 GMT
- Title: Reservoir computing for system identification and predictive control with limited data
- Authors: Jan P. Williams, J. Nathan Kutz, Krithika Manohar,
- Abstract summary: We assess the ability of RNN variants to both learn the dynamics of benchmark control systems and serve as surrogate models for model predictive control (MPC)
We find that echo state networks (ESNs) have a variety of benefits over competing architectures, namely reductions in computational complexity, longer valid prediction times, and reductions in cost of the MPC objective function.
- Score: 3.1484174280822845
- License:
- Abstract: Model predictive control (MPC) is an industry standard control technique that iteratively solves an open-loop optimization problem to guide a system towards a desired state or trajectory. Consequently, an accurate forward model of system dynamics is critical for the efficacy of MPC and much recent work has been aimed at the use of neural networks to act as data-driven surrogate models to enable MPC. Perhaps the most common network architecture applied to this task is the recurrent neural network (RNN) due to its natural interpretation as a dynamical system. In this work, we assess the ability of RNN variants to both learn the dynamics of benchmark control systems and serve as surrogate models for MPC. We find that echo state networks (ESNs) have a variety of benefits over competing architectures, namely reductions in computational complexity, longer valid prediction times, and reductions in cost of the MPC objective function.
Related papers
- Scalable Mechanistic Neural Networks [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.
By reformulating the original Mechanistic Neural Network (MNN) we reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.
Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Dropout MPC: An Ensemble Neural MPC Approach for Systems with Learned Dynamics [0.0]
We propose a novel sampling-based ensemble neural MPC algorithm that employs the Monte-Carlo dropout technique on the learned system model.
The method aims in general at uncertain systems with complex dynamics, where models derived from first principles are hard to infer.
arXiv Detail & Related papers (2024-06-04T17:15:25Z) - Parameter-Adaptive Approximate MPC: Tuning Neural-Network Controllers without Retraining [50.00291020618743]
This work introduces a novel, parameter-adaptive AMPC architecture capable of online tuning without recomputing large datasets and retraining.
We showcase the effectiveness of parameter-adaptive AMPC by controlling the swing-ups of two different real cartpole systems with a severely resource-constrained microcontroller (MCU)
Taken together, these contributions represent a marked step toward the practical application of AMPC in real-world systems.
arXiv Detail & Related papers (2024-04-08T20:02:19Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Pontryagin Optimal Control via Neural Networks [19.546571122359534]
We integrate Neural Networks with the Pontryagin's Maximum Principle (PMP), and propose a sample efficient framework NN-PMP-Gradient.
The resulting controller can be implemented for systems with unknown and complex dynamics.
Compared with the widely applied model-free and model-based reinforcement learning (RL) algorithms, our NN-PMP-Gradient achieves higher sample-efficiency and performance in terms of control objectives.
arXiv Detail & Related papers (2022-12-30T06:47:03Z) - Real-time Neural-MPC: Deep Learning Model Predictive Control for
Quadrotors and Agile Robotic Platforms [59.03426963238452]
We present Real-time Neural MPC, a framework to efficiently integrate large, complex neural network architectures as dynamics models within a model-predictive control pipeline.
We show the feasibility of our framework on real-world problems by reducing the positional tracking error by up to 82% when compared to state-of-the-art MPC approaches without neural network dynamics.
arXiv Detail & Related papers (2022-03-15T09:38:15Z) - Physics-informed Neural Networks-based Model Predictive Control for
Multi-link Manipulators [0.0]
We discuss nonlinear model predictive control (NMPC) for multi-body dynamics via physics-informed machine learning methods.
We present the idea of enhancing PINNs by adding control actions and initial conditions as additional network inputs.
We present our results using our PINN-based MPC to solve a tracking problem for a complex mechanical system.
arXiv Detail & Related papers (2021-09-22T15:31:24Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - On Training and Evaluation of Neural Network Approaches for Model
Predictive Control [9.8918553325509]
This paper is a framework for training and evaluation of Model Predictive Control (MPC) implemented using constrained neural networks.
The motivation is to replace real-time optimization in safety critical feedback control systems with learnt mappings in the form of neural networks with optimization layers.
arXiv Detail & Related papers (2020-05-08T15:37:55Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.