論文の概要: Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler
- arxiv url: http://arxiv.org/abs/2408.13359v2
- Date: Wed, 11 Sep 2024 20:48:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 20:59:43.852986
- Title: Power Scheduler: A Batch Size and Token Number Agnostic Learning Rate Scheduler
- Title(参考訳): Power Scheduler: Batch SizeとToken Number Agnostic Learning Rate Scheduler
- Authors: Yikang Shen, Matthew Stallone, Mayank Mishra, Gaoyuan Zhang, Shawn Tan, Aditya Prasad, Adriana Meza Soria, David D. Cox, Rameswar Panda,
- Abstract要約: 提案したWSDスケジューラの最適学習率,バッチサイズ,トレーニングトークン数の相関について検討した。
本稿では,学習率スケジューラであるPowerスケジューラを提案する。
Powerスケジューラでトレーニングした3B高密度モデルとMoEモデルは、最先端の小型言語モデルと同等のパフォーマンスを実現しています。
- 参考スコア(独自算出の注目度): 34.416299887009195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Finding the optimal learning rate for language model pretraining is a challenging task. This is not only because there is a complicated correlation between learning rate, batch size, number of training tokens, model size, and other hyperparameters but also because it is prohibitively expensive to perform a hyperparameter search for large language models with Billions or Trillions of parameters. Recent studies propose using small proxy models and small corpus to perform hyperparameter searches and transposing the optimal parameters to large models and large corpus. While the zero-shot transferability is theoretically and empirically proven for model size related hyperparameters, like depth and width, the zero-shot transfer from small corpus to large corpus is underexplored. In this paper, we study the correlation between optimal learning rate, batch size, and number of training tokens for the recently proposed WSD scheduler. After thousands of small experiments, we found a power-law relationship between variables and demonstrated its transferability across model sizes. Based on the observation, we propose a new learning rate scheduler, Power scheduler, that is agnostic about the number of training tokens and batch size. The experiment shows that combining the Power scheduler with Maximum Update Parameterization (muP) can consistently achieve impressive performance with one set of hyperparameters regardless of the number of training tokens, batch size, model size, and even model architecture. Our 3B dense and MoE models trained with the Power scheduler achieve comparable performance as state-of-the-art small language models. We open-source these pretrained models at https://ibm.biz/BdKhLa.
- Abstract(参考訳): 言語モデルの事前学習に最適な学習率を見つけることは難しい課題である。
これは、学習率、バッチサイズ、トレーニングトークン数、モデルサイズとその他のハイパーパラメータとの間に複雑な相関関係があるだけでなく、数十億または3兆のパラメータを持つ大規模言語モデルのハイパーパラメータ検索を行うことが違法に高価であるためでもある。
近年の研究では、小さなプロキシモデルと小さなコーパスを用いて、ハイパーパラメーター探索を行い、最適なパラメータを大きなモデルや大きなコーパスに変換する手法が提案されている。
ゼロショット転送性は、深さや幅などのモデルサイズに関連するハイパーパラメーターに対して理論的および実験的に証明されているが、小さなコーパスから大きなコーパスへのゼロショット転送は過小評価されている。
本稿では,最近提案されたWSDスケジューラにおける最適学習率,バッチサイズ,トレーニングトークン数の相関について検討する。
何千もの小さな実験の後、変数間の電力-法則関係を発見し、モデルサイズ間での転送可能性を示した。
そこで本研究では,学習率スケジューラであるパワースケジューラを提案する。
実験によると、Powerスケジューラと最大更新パラメータ(muP)を組み合わせることで、トレーニングトークンの数、バッチサイズ、モデルサイズ、さらにはモデルアーキテクチャにも拘わらず、1セットのハイパーパラメータで、常に優れたパフォーマンスを達成することができる。
Powerスケジューラでトレーニングした3B高密度モデルとMoEモデルは、最先端の小型言語モデルと同等のパフォーマンスを実現しています。
トレーニング済みのモデルをhttps://ibm.biz/BdKhLa.comで公開しています。
関連論文リスト
- Scaling Smart: Accelerating Large Language Model Pre-training with Small Model Initialization [22.90653167145603]
本稿では,事前学習した言語モデルのパラメータを,隠れ次元が増大する大規模モデルのパラメータに拡張する手法であるHyperCloningを紹介する。
結果として、より大きなモデルは、トレーニングを開始する前に、より小さなモデルの予測能力と精度をすでに継承している。
論文 参考訳(メタデータ) (2024-09-19T16:50:26Z) - RepCNN: Micro-sized, Mighty Models for Wakeword Detection [3.4888176891918654]
常時オンの機械学習モデルは、非常に少ないメモリと計算フットプリントを必要とする。
より大規模なマルチブランチアーキテクチャへの計算によって、小さな畳み込みモデルをよりよく訓練できることが示される。
我々は、常時起動するウェイクワード検出モデルであるRepCNNが、推論中のレイテンシと精度のトレードオフを良好に提供することを示す。
論文 参考訳(メタデータ) (2024-06-04T16:14:19Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
本稿では,アクセル時間で測定された等価計算に基づくモデル比較を可能にする実験的プロトコルを提案する。
私たちは、既存の学術的ベンチマークを上回り、品質、多様性、文書の長さで上回る、大規模で多様で高品質な書籍データセットを前処理します。
この研究は、GPT-2アーキテクチャから派生したフィードフォワードモデルと、10倍のスループットを持つ新しいLSTMの形式でのリカレントモデルという2つのベースラインモデルも提供する。
論文 参考訳(メタデータ) (2023-09-20T10:31:17Z) - Pruning Large Language Models via Accuracy Predictor [0.0]
数十億のパラメータ(あるいはそれ以上)を含む大規模言語モデル(LLM)は、様々なNLPタスクにおいて印象的な機能を示している。
まず,一定の数のアーキテクチャと精度のペアのトレーニングセットを構築し,非ニューラルネットワークモデルを精度予測器として訓練する。
論文 参考訳(メタデータ) (2023-09-18T06:38:24Z) - Contrastive Alignment of Vision to Language Through Parameter-Efficient
Transfer Learning [60.26952378997713]
コントラスト的視覚言語モデル(例えばCLIP)は、コントラスト的トレーニングを通じて視覚モデルと言語モデルの全てのパラメータを更新することによって作成される。
パラメータ更新の最小セット($7%)が、フルモデルトレーニングと同じパフォーマンスを実現可能であることを示す。
既存の知識がパラメータ効率のトレーニングにおいてより強く保存されていることを示す。
論文 参考訳(メタデータ) (2023-03-21T14:12:08Z) - Zero-Shot Learners for Natural Language Understanding via a Unified
Multiple Choice Perspective [26.41585967095811]
ゼロショット学習は、与えられたタスクでモデルをトレーニングすることを目的としており、追加のトレーニングなしで新しい学習タスクに対処できる。
提案手法は、ゼロショット学習を複数選択タスクに変換し、FLANなどの大規模生成モデルで一般的に使用される問題を回避する。
提案手法は,いくつかのベンチマークにおいて最先端の性能を示し,自然言語推論やテキスト分類といったタスクに対して良好な結果をもたらす。
論文 参考訳(メタデータ) (2022-10-16T17:24:06Z) - Zemi: Learning Zero-Shot Semi-Parametric Language Models from Multiple
Tasks [77.90900650816046]
ゼロショットセミパラメトリック言語モデルである$textZemi$を紹介します。
私たちは、新しいセミパラメトリックマルチタスクによるトレーニングパラダイムで、textZemi$をトレーニングします。
具体的には、大規模タスクに依存しない未ラベルコーパスからの検索により、マルチタスクトレーニングとゼロショット評価を強化する。
論文 参考訳(メタデータ) (2022-10-01T04:08:50Z) - Parameter-Efficient Sparsity for Large Language Models Fine-Tuning [63.321205487234074]
私たちはaを提案します。
Sparse- efficient Sparse Training (PST) は、スパース・アウェア・トレーニング中にトレーニング可能なパラメータの数を減少させる手法である。
多様なネットワーク(BERT、RoBERTa、GPT-2)を用いた実験では、PSTは従来のスパーシリティ法よりも同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-05-23T02:43:45Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - It's the Best Only When It Fits You Most: Finding Related Models for
Serving Based on Dynamic Locality Sensitive Hashing [1.581913948762905]
トレーニングデータの作成は、生産や研究のためにディープラーニングモデルをデプロイするライフサイクルにおいて、しばしばボトルネックとなる。
本稿では,対象のデータセットと利用可能なモデルのトレーニングデータセットの類似性に基づいて,関連するモデルを検索してサービスするエンド・ツー・エンドプロセスを提案する。
論文 参考訳(メタデータ) (2020-10-13T22:52:13Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
NLPモデルが大きくなればなるほど、訓練されたモデルを実行するには、金銭的・環境的なコストを発生させる重要な計算資源が必要である。
我々は、推論中、早期(かつ高速)の"exit"を可能にする文脈表現微調整の修正を提案する。
3つのテキスト分類データセットと2つの自然言語推論ベンチマークの2つのタスクで、5つの異なるデータセットに対して提案した修正を検証した。
論文 参考訳(メタデータ) (2020-04-16T04:28:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。