ALIAS: DAG Learning with Efficient Unconstrained Policies
- URL: http://arxiv.org/abs/2408.13448v2
- Date: Tue, 27 Aug 2024 03:28:50 GMT
- Title: ALIAS: DAG Learning with Efficient Unconstrained Policies
- Authors: Bao Duong, Hung Le, Thin Nguyen,
- Abstract summary: We introduce ALIAS, a novel approach to causal discovery powered by the reinforcement learning machinery.
Our method features an efficient policy for generating DAGs in just a single step with an optimal quadratic complexity.
We provide compelling empirical evidence for the strong performance of ALIAS in comparison with state-of-the-arts in causal discovery.
- Score: 30.67987131971867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, reinforcement learning (RL) has proved a promising alternative for conventional local heuristics in score-based approaches to learning directed acyclic causal graphs (DAGs) from observational data. However, the intricate acyclicity constraint still challenges the efficient exploration of the vast space of DAGs in existing methods. In this study, we introduce ALIAS (reinforced dAg Learning wIthout Acyclicity conStraints), a novel approach to causal discovery powered by the RL machinery. Our method features an efficient policy for generating DAGs in just a single step with an optimal quadratic complexity, fueled by a novel parametrization of DAGs that directly translates a continuous space to the space of all DAGs, bypassing the need for explicitly enforcing acyclicity constraints. This approach enables us to navigate the search space more effectively by utilizing policy gradient methods and established scoring functions. In addition, we provide compelling empirical evidence for the strong performance of ALIAS in comparison with state-of-the-arts in causal discovery over increasingly difficult experiment conditions on both synthetic and real datasets.
Related papers
- AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs [57.12929098407975]
We show that by efficiently parallelizing existing causal discovery methods, we can scale them to thousands of dimensions.
Specifically, we focus on the causal ordering subprocedure in DirectLiNGAM and implement GPU kernels to accelerate it.
This allows us to apply DirectLiNGAM to causal inference on large-scale gene expression data with genetic interventions yielding competitive results.
arXiv Detail & Related papers (2024-03-06T15:06:11Z) - Tree Search in DAG Space with Model-based Reinforcement Learning for
Causal Discovery [6.772856304452474]
CD-UCT is a model-based reinforcement learning method for causal discovery based on tree search.
We formalize and prove the correctness of an efficient algorithm for excluding edges that would introduce cycles.
The proposed method can be applied broadly to causal Bayesian networks with both discrete and continuous random variables.
arXiv Detail & Related papers (2023-10-20T15:14:18Z) - Discovering Dynamic Causal Space for DAG Structure Learning [64.763763417533]
We propose a dynamic causal space for DAG structure learning, coined CASPER.
It integrates the graph structure into the score function as a new measure in the causal space to faithfully reflect the causal distance between estimated and ground truth DAG.
arXiv Detail & Related papers (2023-06-05T12:20:40Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - DAG-WGAN: Causal Structure Learning With Wasserstein Generative
Adversarial Networks [2.492300648514129]
This paper proposes DAG-WGAN, which combines the Wasserstein-based adversarial loss, an auto-encoder architecture together with an acyclicity constraint.
It simultaneously learns causal structures and improves its data generation capability by leveraging the strength from the Wasserstein distance metric.
Our experiments have evaluated DAG-WGAN against the state-of-the-art and demonstrated its good performance.
arXiv Detail & Related papers (2022-04-01T12:27:27Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
Generative adversarial networks (GANs) typically require ample data for training in order to synthesize high-fidelity images.
Recent studies have shown that training GANs with limited data remains formidable due to discriminator overfitting.
This paper introduces a novel strategy called Adaptive Pseudo Augmentation (APA) to encourage healthy competition between the generator and the discriminator.
arXiv Detail & Related papers (2021-11-12T18:13:45Z) - Learning linear non-Gaussian directed acyclic graph with diverging
number of nodes [12.49848873864773]
Acyclic model, often depicted as a directed acyclic graph (DAG), has been widely employed to represent directional causal relations among collected nodes.
We propose an efficient method to learn linear non-Gaussian DAG in high dimensional cases, where the noises can be of any continuous non-Gaussian distribution.
arXiv Detail & Related papers (2021-11-01T07:34:53Z) - Efficient Neural Causal Discovery without Acyclicity Constraints [30.08586535981525]
We present ENCO, an efficient structure learning method for directed, acyclic causal graphs.
In experiments, we show that ENCO can efficiently recover graphs with hundreds of nodes, an order of magnitude larger than what was previously possible.
arXiv Detail & Related papers (2021-07-22T07:01:41Z) - DAGs with No Curl: An Efficient DAG Structure Learning Approach [62.885572432958504]
Recently directed acyclic graph (DAG) structure learning is formulated as a constrained continuous optimization problem with continuous acyclicity constraints.
We propose a novel learning framework to model and learn the weighted adjacency matrices in the DAG space directly.
We show that our method provides comparable accuracy but better efficiency than baseline DAG structure learning methods on both linear and generalized structural equation models.
arXiv Detail & Related papers (2021-06-14T07:11:36Z) - DEALIO: Data-Efficient Adversarial Learning for Imitation from
Observation [57.358212277226315]
In imitation learning from observation IfO, a learning agent seeks to imitate a demonstrating agent using only observations of the demonstrated behavior without access to the control signals generated by the demonstrator.
Recent methods based on adversarial imitation learning have led to state-of-the-art performance on IfO problems, but they typically suffer from high sample complexity due to a reliance on data-inefficient, model-free reinforcement learning algorithms.
This issue makes them impractical to deploy in real-world settings, where gathering samples can incur high costs in terms of time, energy, and risk.
We propose a more data-efficient IfO algorithm
arXiv Detail & Related papers (2021-03-31T23:46:32Z) - On the Role of Sparsity and DAG Constraints for Learning Linear DAGs [16.97675762810828]
We study the role of sparsity and DAG constraints for learning DAG models in the linear Gaussian and non-Gaussian cases.
We propose a likelihood-based score function, and show that one only has to apply soft sparsity and DAG constraints to learn a DAG equivalent to the ground truth DAG.
arXiv Detail & Related papers (2020-06-17T23:43:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.