AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs
- URL: http://arxiv.org/abs/2403.03772v1
- Date: Wed, 6 Mar 2024 15:06:11 GMT
- Title: AcceleratedLiNGAM: Learning Causal DAGs at the speed of GPUs
- Authors: Victor Akinwande, J. Zico Kolter
- Abstract summary: We show that by efficiently parallelizing existing causal discovery methods, we can scale them to thousands of dimensions.
Specifically, we focus on the causal ordering subprocedure in DirectLiNGAM and implement GPU kernels to accelerate it.
This allows us to apply DirectLiNGAM to causal inference on large-scale gene expression data with genetic interventions yielding competitive results.
- Score: 57.12929098407975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing causal discovery methods based on combinatorial optimization or
search are slow, prohibiting their application on large-scale datasets. In
response, more recent methods attempt to address this limitation by formulating
causal discovery as structure learning with continuous optimization but such
approaches thus far provide no statistical guarantees. In this paper, we show
that by efficiently parallelizing existing causal discovery methods, we can in
fact scale them to thousands of dimensions, making them practical for
substantially larger-scale problems. In particular, we parallelize the LiNGAM
method, which is quadratic in the number of variables, obtaining up to a
32-fold speed-up on benchmark datasets when compared with existing sequential
implementations. Specifically, we focus on the causal ordering subprocedure in
DirectLiNGAM and implement GPU kernels to accelerate it. This allows us to
apply DirectLiNGAM to causal inference on large-scale gene expression data with
genetic interventions yielding competitive results compared with specialized
continuous optimization methods, and Var-LiNGAM for causal discovery on U.S.
stock data.
Related papers
- Optimizing VarLiNGAM for Scalable and Efficient Time Series Causal Discovery [5.430532390358285]
Causal discovery is designed to identify causal relationships in data.
Time series causal discovery is particularly challenging due to the need to account for temporal dependencies and potential time lag effects.
This study significantly improves the feasibility of processing large datasets.
arXiv Detail & Related papers (2024-09-09T10:52:58Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
This work offers an efficient solution to temporal point processes inference using general parametric kernels with finite support.
The method's effectiveness is evaluated by modeling the occurrence of stimuli-induced patterns from brain signals recorded with magnetoencephalography (MEG)
Results show that the proposed approach leads to an improved estimation of pattern latency than the state-of-the-art.
arXiv Detail & Related papers (2022-10-10T12:35:02Z) - Distributed Dynamic Safe Screening Algorithms for Sparse Regularization [73.85961005970222]
We propose a new distributed dynamic safe screening (DDSS) method for sparsity regularized models and apply it on shared-memory and distributed-memory architecture respectively.
We prove that the proposed method achieves the linear convergence rate with lower overall complexity and can eliminate almost all the inactive features in a finite number of iterations almost surely.
arXiv Detail & Related papers (2022-04-23T02:45:55Z) - Nesterov Accelerated ADMM for Fast Diffeomorphic Image Registration [63.15453821022452]
Recent developments in approaches based on deep learning have achieved sub-second runtimes for DiffIR.
We propose a simple iterative scheme that functionally composes intermediate non-stationary velocity fields.
We then propose a convex optimisation model that uses a regularisation term of arbitrary order to impose smoothness on these velocity fields.
arXiv Detail & Related papers (2021-09-26T19:56:45Z) - Highly Parallel Autoregressive Entity Linking with Discriminative
Correction [51.947280241185]
We propose a very efficient approach that parallelizes autoregressive linking across all potential mentions.
Our model is >70 times faster and more accurate than the previous generative method.
arXiv Detail & Related papers (2021-09-08T17:28:26Z) - MuyGPs: Scalable Gaussian Process Hyperparameter Estimation Using Local
Cross-Validation [1.2233362977312945]
We present MuyGPs, a novel efficient GP hyper parameter estimation method.
MuyGPs builds upon prior methods that take advantage of the nearest neighbors structure of the data.
We show that our method outperforms all known competitors both in terms of time-to-solution and the root mean squared error of the predictions.
arXiv Detail & Related papers (2021-04-29T18:10:21Z) - Exact Optimization of Conformal Predictors via Incremental and
Decremental Learning [46.9970555048259]
Conformal Predictors (CP) are wrappers around ML methods, providing error guarantees under weak assumptions on the data distribution.
They are suitable for a wide range of problems, from classification and regression to anomaly detection.
We show that it is possible to speed up a CP classifier considerably, by studying it in conjunction with the underlying ML method, and by exploiting incremental&decremental learning.
arXiv Detail & Related papers (2021-02-05T15:31:37Z) - Kernel methods through the roof: handling billions of points efficiently [94.31450736250918]
Kernel methods provide an elegant and principled approach to nonparametric learning, but so far could hardly be used in large scale problems.
Recent advances have shown the benefits of a number of algorithmic ideas, for example combining optimization, numerical linear algebra and random projections.
Here, we push these efforts further to develop and test a solver that takes full advantage of GPU hardware.
arXiv Detail & Related papers (2020-06-18T08:16:25Z) - Longitudinal Deep Kernel Gaussian Process Regression [16.618767289437905]
We introduce Longitudinal deep kernel process regression (L-DKGPR)
L-DKGPR automates the discovery of complex multilevel correlation structure from longitudinal data.
We derive an efficient algorithm to train L-DKGPR using latent space inducing points and variational inference.
arXiv Detail & Related papers (2020-05-24T15:10:48Z) - Statistical Outlier Identification in Multi-robot Visual SLAM using
Expectation Maximization [18.259478519717426]
This paper introduces a novel and distributed method for detecting inter-map loop closure outliers in simultaneous localization and mapping (SLAM)
The proposed algorithm does not rely on a good initialization and can handle more than two maps at a time.
arXiv Detail & Related papers (2020-02-07T06:34:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.