Characterization of Randomness in Quantum Circuits of Continuous Gate Sets
- URL: http://arxiv.org/abs/2408.13475v2
- Date: Fri, 30 Aug 2024 16:32:21 GMT
- Title: Characterization of Randomness in Quantum Circuits of Continuous Gate Sets
- Authors: Yosuke Mitsuhashi, Ryotaro Suzuki, Tomohiro Soejima, Nobuyuki Yoshioka,
- Abstract summary: We have established the method of characterizing the maximal order of approximate unitary designs generated by symmetric local random circuits.
Here, we provide details on the derivation of the main theorems for general symmetry and for concrete symmetries.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the accompanying paper of arXiv:2408.13472, we have established the method of characterizing the maximal order of approximate unitary designs generated by symmetric local random circuits, and have explicitly specified the order in the cases of $\mathbb{Z}_2$, U(1), and SU(2) symmetries. Here, we provide full details on the derivation of the main theorems for general symmetry and for concrete symmetries. Furthermore, we consider a general framework where we have access to a finite set of connected compact unitary subgroups, which includes symmetric local unitary gate sets.
Related papers
- Unitary Designs from Random Symmetric Quantum Circuits [0.8192907805418583]
We study distributions of unitaries generated by random quantum circuits containing only symmetry-respecting gates.
We obtain an equation that determines the exact design properties of such distributions.
arXiv Detail & Related papers (2024-08-26T17:52:46Z) - Unitary Designs of Symmetric Local Random Circuits [0.0]
We show that the necessary and sufficient condition for the circuit forming an approximate t-design is given by simple integer optimization for general symmetry and locality.
This work reveals the relation between the fundamental notions of symmetry and locality in terms of randomness.
arXiv Detail & Related papers (2024-08-24T05:13:36Z) - Product Geometries on Cholesky Manifolds with Applications to SPD Manifolds [65.04845593770727]
We present two new metrics on the Symmetric Positive Definite (SPD) manifold via the Cholesky manifold.
Our metrics are easy to use, computationally efficient, and numerically stable.
arXiv Detail & Related papers (2024-07-02T18:46:13Z) - Wigner's Theorem for stabilizer states and quantum designs [0.6374763930914523]
We describe the symmetry group of the stabilizer polytope for any number $n$ of systems and any prime local dimension $d$.
In the qubit case, the symmetry group coincides with the linear and anti-linear Clifford operations.
We extend an observation of Heinrich and Gross and show that the symmetries of fairly general sets of Hermitian operators are constrained by certain moments.
arXiv Detail & Related papers (2024-05-27T18:00:13Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - Clifford Group and Unitary Designs under Symmetry [0.0]
We prove that a symmetric Clifford group is a symmetric unitary 3-design if and only if the symmetry constraint is described by some Pauli subgroup.
We have also found a complete and unique construction method of symmetric Clifford groups with simple quantum gates for Pauli symmetries.
arXiv Detail & Related papers (2023-06-30T11:21:50Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Constraints on Maximal Entanglement Under Groups of Permutations [73.21730086814223]
Sets of entanglements are inherently equal, lying in the same orbit under the group action.
We introduce new, generalized relationships for the maxima of those entanglement by exploiting the normalizer and normal subgroups of the physical symmetry group.
arXiv Detail & Related papers (2020-11-30T02:21:22Z) - Hilbert-space geometry of random-matrix eigenstates [55.41644538483948]
We discuss the Hilbert-space geometry of eigenstates of parameter-dependent random-matrix ensembles.
Our results give the exact joint distribution function of the Fubini-Study metric and the Berry curvature.
We compare our results to numerical simulations of random-matrix ensembles as well as electrons in a random magnetic field.
arXiv Detail & Related papers (2020-11-06T19:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.