Rethinking State Disentanglement in Causal Reinforcement Learning
- URL: http://arxiv.org/abs/2408.13498v1
- Date: Sat, 24 Aug 2024 06:49:13 GMT
- Title: Rethinking State Disentanglement in Causal Reinforcement Learning
- Authors: Haiyao Cao, Zhen Zhang, Panpan Cai, Yuhang Liu, Jinan Zou, Ehsan Abbasnejad, Biwei Huang, Mingming Gong, Anton van den Hengel, Javen Qinfeng Shi,
- Abstract summary: Causality provides rigorous theoretical support for ensuring that the underlying states can be uniquely recovered through identifiability.
We revisit this research line and find that incorporating RL-specific context can reduce unnecessary assumptions in previous identifiability analyses for latent states.
We propose a novel approach for general partially observable Markov Decision Processes (POMDPs) by replacing the complicated structural constraints in previous methods with two simple constraints for transition and reward preservation.
- Score: 78.12976579620165
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: One of the significant challenges in reinforcement learning (RL) when dealing with noise is estimating latent states from observations. Causality provides rigorous theoretical support for ensuring that the underlying states can be uniquely recovered through identifiability. Consequently, some existing work focuses on establishing identifiability from a causal perspective to aid in the design of algorithms. However, these results are often derived from a purely causal viewpoint, which may overlook the specific RL context. We revisit this research line and find that incorporating RL-specific context can reduce unnecessary assumptions in previous identifiability analyses for latent states. More importantly, removing these assumptions allows algorithm design to go beyond the earlier boundaries constrained by them. Leveraging these insights, we propose a novel approach for general partially observable Markov Decision Processes (POMDPs) by replacing the complicated structural constraints in previous methods with two simple constraints for transition and reward preservation. With the two constraints, the proposed algorithm is guaranteed to disentangle state and noise that is faithful to the underlying dynamics. Empirical evidence from extensive benchmark control tasks demonstrates the superiority of our approach over existing counterparts in effectively disentangling state belief from noise.
Related papers
- Sound Heuristic Search Value Iteration for Undiscounted POMDPs with Reachability Objectives [16.101435842520473]
This paper studies the challenging yet important problem in POMDPs known as the (indefinite-horizon) Maximal Reachability Probability Problem.
Inspired by the success of point-based methods developed for discounted problems, we study their extensions to MRPP.
We present a novel algorithm that leverages the strengths of these techniques for efficient exploration of the belief space.
arXiv Detail & Related papers (2024-06-05T02:33:50Z) - A General Causal Inference Framework for Cross-Sectional Observational Data [0.4972323953932129]
General Causal Inference (GCI) framework specifically designed for cross-sectional observational data.
This paper proposes a GCI framework specifically designed for cross-sectional observational data.
arXiv Detail & Related papers (2024-04-28T14:26:27Z) - Markov Decision Processes with Noisy State Observation [0.0]
This paper addresses the challenge of a particular class of noisy state observations in Markov Decision Processes (MDPs)
We focus on modeling this uncertainty through a confusion matrix that captures the probabilities of misidentifying the true state.
We propose two novel algorithmic approaches to estimate the inherent measurement noise.
arXiv Detail & Related papers (2023-12-13T21:50:38Z) - Provable Representation with Efficient Planning for Partial Observable Reinforcement Learning [74.67655210734338]
In most real-world reinforcement learning applications, state information is only partially observable, which breaks the Markov decision process assumption.
We develop a representation-based perspective that leads to a coherent framework and tractable algorithmic approach for practical reinforcement learning from partial observations.
We empirically demonstrate the proposed algorithm can surpass state-of-the-art performance with partial observations across various benchmarks.
arXiv Detail & Related papers (2023-11-20T23:56:58Z) - Causal Representation Learning Made Identifiable by Grouping of Observational Variables [8.157856010838382]
Causal Representation Learning aims to learn a causal model for hidden features in a data-driven manner.
Here, we show identifiability based on novel, weak constraints.
We also propose a novel self-supervised estimation framework consistent with the model.
arXiv Detail & Related papers (2023-10-24T10:38:02Z) - Spectral Decomposition Representation for Reinforcement Learning [100.0424588013549]
We propose an alternative spectral method, Spectral Decomposition Representation (SPEDER), that extracts a state-action abstraction from the dynamics without inducing spurious dependence on the data collection policy.
A theoretical analysis establishes the sample efficiency of the proposed algorithm in both the online and offline settings.
An experimental investigation demonstrates superior performance over current state-of-the-art algorithms across several benchmarks.
arXiv Detail & Related papers (2022-08-19T19:01:30Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Instance-Dependent Confidence and Early Stopping for Reinforcement
Learning [99.57168572237421]
Various algorithms for reinforcement learning (RL) exhibit dramatic variation in their convergence rates as a function of problem structure.
This research provides guarantees that explain textitex post the performance differences observed.
A natural next step is to convert these theoretical guarantees into guidelines that are useful in practice.
arXiv Detail & Related papers (2022-01-21T04:25:35Z) - On the Minimal Adversarial Perturbation for Deep Neural Networks with
Provable Estimation Error [65.51757376525798]
The existence of adversarial perturbations has opened an interesting research line on provable robustness.
No provable results have been presented to estimate and bound the error committed.
This paper proposes two lightweight strategies to find the minimal adversarial perturbation.
The obtained results show that the proposed strategies approximate the theoretical distance and robustness for samples close to the classification, leading to provable guarantees against any adversarial attacks.
arXiv Detail & Related papers (2022-01-04T16:40:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.