A General Causal Inference Framework for Cross-Sectional Observational Data
- URL: http://arxiv.org/abs/2404.18197v1
- Date: Sun, 28 Apr 2024 14:26:27 GMT
- Title: A General Causal Inference Framework for Cross-Sectional Observational Data
- Authors: Yonghe Zhao, Huiyan Sun,
- Abstract summary: General Causal Inference (GCI) framework specifically designed for cross-sectional observational data.
This paper proposes a GCI framework specifically designed for cross-sectional observational data.
- Score: 0.4972323953932129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal inference methods for observational data are highly regarded due to their wide applicability. While there are already numerous methods available for de-confounding bias, these methods generally assume that covariates consist solely of confounders or make naive assumptions about the covariates. Such assumptions face challenges in both theory and practice, particularly when dealing with high-dimensional covariates. Relaxing these naive assumptions and identifying the confounding covariates that truly require correction can effectively enhance the practical significance of these methods. Therefore, this paper proposes a General Causal Inference (GCI) framework specifically designed for cross-sectional observational data, which precisely identifies the key confounding covariates and provides corresponding identification algorithm. Specifically, based on progressive derivations of the Markov property on Directed Acyclic Graph, we conclude that the key confounding covariates are equivalent to the common root ancestors of the treatment and the outcome variable. Building upon this conclusion, the GCI framework is composed of a novel Ancestor Set Identification (ASI) algorithm and de-confounding inference methods. Firstly, the ASI algorithm is theoretically supported by the conditional independence properties and causal asymmetry between variables, enabling the identification of key confounding covariates. Subsequently, the identified confounding covariates are used in the de-confounding inference methods to obtain unbiased causal effect estimation, which can support informed decision-making. Extensive experiments on synthetic datasets demonstrate that the GCI framework can effectively identify the critical confounding covariates and significantly improve the precision, stability, and interpretability of causal inference in observational studies.
Related papers
- Score-based Causal Representation Learning: Linear and General Transformations [31.786444957887472]
The paper addresses both the identifiability and achievability aspects.
It designs a score-based class of algorithms that ensures both identifiability and achievability.
Results are empirically validated via experiments on structured synthetic data and image data.
arXiv Detail & Related papers (2024-02-01T18:40:03Z) - Causal Representation Learning Made Identifiable by Grouping of Observational Variables [8.157856010838382]
Causal Representation Learning aims to learn a causal model for hidden features in a data-driven manner.
Here, we show identifiability based on novel, weak constraints.
We also propose a novel self-supervised estimation framework consistent with the model.
arXiv Detail & Related papers (2023-10-24T10:38:02Z) - General Identifiability and Achievability for Causal Representation
Learning [33.80247458590611]
The paper establishes identifiability and achievability results using two hard uncoupled interventions per node in the latent causal graph.
For identifiability, the paper establishes that perfect recovery of the latent causal model and variables is guaranteed under uncoupled interventions.
The analysis, additionally, recovers the identifiability result for two hard coupled interventions, that is when metadata about the pair of environments that have the same node intervened is known.
arXiv Detail & Related papers (2023-10-24T01:47:44Z) - Does Misclassifying Non-confounding Covariates as Confounders Affect the
Causal Inference within the Potential Outcomes Framework? [4.074237603319893]
The Potential Outcome Framework (POF) plays a prominent role in the field of causal inference.
We present a unified graphical framework for the CIMs-POF, which greatly enhances the comprehension of these models' underlying principles.
arXiv Detail & Related papers (2023-08-22T13:18:13Z) - Advancing Counterfactual Inference through Nonlinear Quantile Regression [77.28323341329461]
We propose a framework for efficient and effective counterfactual inference implemented with neural networks.
The proposed approach enhances the capacity to generalize estimated counterfactual outcomes to unseen data.
Empirical results conducted on multiple datasets offer compelling support for our theoretical assertions.
arXiv Detail & Related papers (2023-06-09T08:30:51Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
Current approaches to causal structure learning either work with known intervention targets or use hypothesis testing to discover the unknown intervention targets.
This paper proposes a scalable and efficient algorithm that consistently identifies all intervention targets.
The proposed algorithm can be used to also update a given observational Markov equivalence class into the interventional Markov equivalence class.
arXiv Detail & Related papers (2021-11-15T03:16:56Z) - Modelling Heterogeneity Using Bayesian Structured Sparsity [0.0]
How to estimate the effect of some variable differing across observations is a key question in political science.
This paper allows a common way of simplifying complex phenomenon (placing observations with similar effects into discrete groups) to be integrated into regression analysis.
arXiv Detail & Related papers (2021-03-29T19:54:25Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
We propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately.
We show that CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error.
arXiv Detail & Related papers (2020-11-03T13:16:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.