論文の概要: CSS-Segment: 2nd Place Report of LSVOS Challenge VOS Track
- arxiv url: http://arxiv.org/abs/2408.13582v1
- Date: Sat, 24 Aug 2024 13:47:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:59:33.837553
- Title: CSS-Segment: 2nd Place Report of LSVOS Challenge VOS Track
- Title(参考訳): CSS-Segment: LSVOS Challenge VOS Trackの第2位
- Authors: Jinming Chai, Qin Ma, Junpei Zhang, Licheng Jiao, Fang Liu,
- Abstract要約: 第6回 LSVOS Challenge VOS Track at ECCV 2024 において,ビデオオブジェクトセグメンテーションのためのチーム "yuanjie" のソリューションを紹介した。
提案したCSS-Segmentは、複雑なオブジェクトの動きや長期的なプレゼンテーションのビデオにおいて、より優れたパフォーマンスが期待できる。
第6回 LSVOS Challenge VOS Track at ECCV 2024 で第2位にランクインした。
- 参考スコア(独自算出の注目度): 35.70400178294299
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video object segmentation is a challenging task that serves as the cornerstone of numerous downstream applications, including video editing and autonomous driving. In this technical report, we briefly introduce the solution of our team "yuanjie" for video object segmentation in the 6-th LSVOS Challenge VOS Track at ECCV 2024. We believe that our proposed CSS-Segment will perform better in videos of complex object motion and long-term presentation. In this report, we successfully validated the effectiveness of the CSS-Segment in video object segmentation. Finally, our method achieved a J\&F score of 80.84 in and test phases, and ultimately ranked 2nd in the 6-th LSVOS Challenge VOS Track at ECCV 2024.
- Abstract(参考訳): ビデオオブジェクトのセグメンテーションは、ビデオ編集や自動運転など、多くの下流アプリケーションの基礎となる難しいタスクである。
本稿では,第6回LSVOS Challenge VOS Track at ECCV 2024において,ビデオオブジェクトセグメンテーションのためのチーム「ユアンジー」のソリューションについて紹介する。
提案したCSS-Segmentは、複雑なオブジェクトの動きや長期的なプレゼンテーションのビデオにおいて、より優れたパフォーマンスが期待できる。
本稿では,映像オブジェクトセグメンテーションにおけるCSS-Segmentの有効性を検証した。
最終的に,本手法は80.84点,試験段階を達成し,ECCV 2024において第6回LSVOSチャレンジVOSトラックの2位にランクインした。
関連論文リスト
- LSVOS Challenge Report: Large-scale Complex and Long Video Object Segmentation [124.50550604020684]
本稿では,ECCV 2024ワークショップと連携して,第6回大規模ビデオオブジェクト(LSVOS)チャレンジを紹介する。
今年の課題には、ビデオオブジェクト(VOS)とビデオオブジェクト(RVOS)の2つのタスクが含まれる。
今年の挑戦は、8か国以上の20以上の機関から129の登録チームを引き寄せた。
論文 参考訳(メタデータ) (2024-09-09T17:45:45Z) - PVUW 2024 Challenge on Complex Video Understanding: Methods and Results [199.5593316907284]
我々は、MOSEデータセットに基づく複合ビデオオブジェクトトラックと、MeViSデータセットに基づくモーション表現ガイドビデオトラックの2つの新しいトラックを追加した。
2つの新しいトラックでは、挑戦的な要素を特徴とする追加のビデオとアノテーションを提供しています。
これらの新しいビデオ、文、アノテーションにより、より包括的で堅牢なビデオシーン理解の開発を促進することができる。
論文 参考訳(メタデータ) (2024-06-24T17:38:58Z) - 1st Place Solution for MeViS Track in CVPR 2024 PVUW Workshop: Motion Expression guided Video Segmentation [81.50620771207329]
ビデオオブジェクトセグメンテーション(RVOS)における静的支配データとフレームサンプリングの有効性について検討する。
本手法は,競技段階でのJ&Fスコア0.5447を達成し,PVUWチャレンジのMeViSトラックで1位となった。
論文 参考訳(メタデータ) (2024-06-11T08:05:26Z) - 3rd Place Solution for MOSE Track in CVPR 2024 PVUW workshop: Complex Video Object Segmentation [63.199793919573295]
ビデオオブジェクト(VOS)はコンピュータビジョンにおいて重要なタスクであり、ビデオフレーム間の背景から前景オブジェクトを区別することに焦点を当てている。
我々の研究はCutieモデルからインスピレーションを得ており、オブジェクトメモリ、メモリフレームの総数、および入力解像度がセグメンテーション性能に与える影響について検討する。
論文 参考訳(メタデータ) (2024-06-06T00:56:25Z) - 2nd Place Solution for PVUW Challenge 2024: Video Panoptic Segmentation [12.274092278786966]
ビデオパノプティクス(VPS)は、ビデオ内のすべてのオブジェクトを同時に分類、追跡、セグメンテーションすることを目的としている。
本稿では,ロバストな統合ビデオパノプティクスセグメンテーションソリューションを提案する。
本稿では,VPQ スコア56.36 と 57.12 の最先端性能を開発・試験段階で達成する。
論文 参考訳(メタデータ) (2024-06-01T17:03:16Z) - 1st Place Solution for the 5th LSVOS Challenge: Video Instance
Segmentation [25.587080499097425]
我々は,SOTA VIS法,DVISのさらなる改良について述べる。
トレーニング可能なトラッカーに対して,より安定かつ正確なオブジェクト追跡を,複雑なビデオや長時間の動画で実現できるように,デノベーショントレーニング戦略を導入する。
本手法は,開発段階で57.9 APと56.0 APをそれぞれ達成し,第5回LSVOSチャレンジのVISトラックで第1位となった。
論文 参考訳(メタデータ) (2023-08-28T08:15:43Z) - 1st Place Solution for PVUW Challenge 2023: Video Panoptic Segmentation [25.235404527487784]
ビデオパノプティクスのセグメンテーションは、多くのダウンストリームアプリケーションの基礎となる難しいタスクである。
DVISが提案するデカップリング戦略は,時間情報をより効果的に活用できると考えている。
第2回PVUWチャレンジのVPSトラックでは,それぞれ51.4と53.7のVPQスコアを達成し,第2回PVUWチャレンジのVPSトラックで第1位となった。
論文 参考訳(メタデータ) (2023-06-07T01:24:48Z) - The Runner-up Solution for YouTube-VIS Long Video Challenge 2022 [72.13080661144761]
この課題に対して,提案したオンラインビデオインスタンス分割方式IDOLを採用した。
擬似ラベルを使用して、コントラスト学習をさらに支援し、時間的に一貫したインスタンスの埋め込みを得る。
提案手法は、YouTube-VIS 2022長ビデオデータセット上で40.2 APを取得し、この課題において第2位にランクされた。
論文 参考訳(メタデータ) (2022-11-18T01:40:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。