論文の概要: Explainable Convolutional Networks for Crater Detection and Lunar Landing Navigation
- arxiv url: http://arxiv.org/abs/2408.13587v1
- Date: Sat, 24 Aug 2024 14:17:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:59:33.828586
- Title: Explainable Convolutional Networks for Crater Detection and Lunar Landing Navigation
- Title(参考訳): クレーター検出と月着陸ナビゲーションのための説明可能な畳み込みネットワーク
- Authors: Jianing Song, Nabil Aouf, Duarte Rondao, Christophe Honvault, Luis Mansilla,
- Abstract要約: 本稿では,インテリジェントな月面着陸のための透明で理解可能な予測手法を提案する。
特徴抽出構造として注意に基づくDarknet53を提案する。
クレーター検出とナビゲーションのタスクには、注目ベースのYOLOv3とアテンションベースのDarknet53-LSTMが紹介されている。
- 参考スコア(独自算出の注目度): 3.1748489631597887
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Lunar landing has drawn great interest in lunar exploration in recent years, and autonomous lunar landing navigation is fundamental to this task. AI is expected to play a critical role in autonomous and intelligent space missions, yet human experts question the reliability of AI solutions. Thus, the \gls{xai} for vision-based lunar landing is studied in this paper, aiming at providing transparent and understandable predictions for intelligent lunar landing. Attention-based Darknet53 is proposed as the feature extraction structure. For crater detection and navigation tasks, attention-based YOLOv3 and attention-Darknet53-LSTM are presented respectively. The experimental results show that the offered networks provide competitive performance on relative crater detection and pose estimation during the lunar landing. The explainability of the provided networks is achieved by introducing an attention mechanism into the network during model building. Moreover, the PCC is utilised to quantitively evaluate the explainability of the proposed networks, with the findings showing the functions of various convolutional layers in the network.
- Abstract(参考訳): 月面着陸は近年、月探査に大きな関心を惹きつけており、自律的な月面着陸航法がこの課題に欠かせない。
AIは自律的でインテリジェントな宇宙ミッションにおいて重要な役割を果たすことが期待されているが、人間の専門家はAIソリューションの信頼性に疑問を呈している。
そこで,この論文では,月面着陸の透明で理解可能な予測を目的とした,視覚に基づく月面着陸のための \gls{xai} について検討した。
特徴抽出構造として注意に基づくDarknet53を提案する。
クレーター検出とナビゲーションのタスクには、それぞれ注目ベースのYOLOv3とアテンションベースのDarknet53-LSTMが提示される。
実験の結果,提案したネットワークは相対的なクレーター検出と月面着陸時のポーズ推定に競争力を発揮することが示された。
モデル構築中にネットワークにアテンション機構を導入することにより、提供されたネットワークの説明可能性を実現する。
さらに,PCCを用いて提案したネットワークの説明可能性について定量的に評価し,ネットワーク内の様々な畳み込み層の機能を示す。
関連論文リスト
- MARs: Multi-view Attention Regularizations for Patch-based Feature Recognition of Space Terrain [4.87717454493713]
現在のアプローチは、事前収集されたパッチベースの機能とテンプレートマッチングに依存している。
マルチビューアテンション・レギュラライゼーション(MAR)を導入し,複数の特徴ビューにまたがるチャネルと空間的注意を制約する。
地形特徴認識性能は85%以上向上した。
論文 参考訳(メタデータ) (2024-10-07T16:41:45Z) - ShadowNav: Autonomous Global Localization for Lunar Navigation in Darkness [4.200882007630191]
私たちはシャドウナブ(ShadowNav)を紹介します。これは、暗闇や夜間の運転に焦点を当てた、月上のグローバルなローカライゼーションのための自律的なアプローチです。
我々のアプローチでは、ルナークレーターの先端をランドマークとして使用し、検出されたクレーターと検出されたクレーターをオフボードマップ上の既知のクレーターに関連付けるために粒子フィルタリング手法を用いています。
アリゾナ州シンダーレイクスにおけるフィールドテストにおいて,Lunarシミュレーション環境とデータ収集における提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2024-05-02T18:59:53Z) - A Bionic Data-driven Approach for Long-distance Underwater Navigation with Anomaly Resistance [59.21686775951903]
様々な動物が環境の手がかりを使って正確なナビゲーションをしている。
動物航法にインスパイアされたこの研究は、長距離水中航法のためのバイオニックでデータ駆動のアプローチを提案する。
提案手法では,GPSシステムや地理地図を必要とせず,測地データを用いてナビゲーションを行う。
論文 参考訳(メタデータ) (2024-02-06T13:20:56Z) - Taking a PEEK into YOLOv5 for Satellite Component Recognition via
Entropy-based Visual Explanations [0.0]
本稿では,小型追尾衛星の自律群集を目標形状決定に活用するための取り組みに貢献する。
本研究は、衛星部品検出訓練対象検出モデル「You Only Look Once v5」(YOLOv5)の軌道上での利用について検討する。
論文 参考訳(メタデータ) (2023-11-03T04:21:27Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
スモークとダストは、搭載された知覚システムに依存するため、あらゆる移動ロボットプラットフォームの性能に影響を与える。
本稿では,重みと空間情報に基づく新しいモジュラー計算フィルタを提案する。
論文 参考訳(メタデータ) (2023-08-14T16:48:57Z) - Detection and Initial Assessment of Lunar Landing Sites Using Neural
Networks [0.0]
本稿では、誘導システムにおける着陸可能地域の初期評価を生成するために、受動的自律型ハザード検出と回避サブシステムに焦点を当てる。
このシステムは単一のカメラとMobileNetV2ニューラルネットワークアーキテクチャを使って、安全な着陸地点と岩や影、クレーターなどの危険を検知し、識別する。
論文 参考訳(メタデータ) (2022-07-23T04:29:18Z) - ADAPT: An Open-Source sUAS Payload for Real-Time Disaster Prediction and
Response with AI [55.41644538483948]
小型無人航空機システム(sUAS)は、多くの人道支援や災害対応作戦において顕著な構成要素となっている。
我々は,SUAS上にリアルタイムAIとコンピュータビジョンをデプロイするための,オープンソースのADAPTマルチミッションペイロードを開発した。
本研究では,河川氷の状態を監視し,破滅的な洪水現象をタイムリーに予測するための,リアルタイム・飛行中の氷分断の例を示す。
論文 参考訳(メタデータ) (2022-01-25T14:51:19Z) - Deep Learning Aided Routing for Space-Air-Ground Integrated Networks
Relying on Real Satellite, Flight, and Shipping Data [79.96177511319713]
現在の海上通信は主に単なる送信資源を持つ衛星に依存しており、現代の地上無線ネットワークよりも性能が劣っている。
大陸横断航空輸送の増加に伴い、商業旅客機に依存した航空アドホックネットワークという有望な概念は、空対地およびマルチホップ空対空リンクを介して衛星ベースの海上通信を強化する可能性がある。
低軌道衛星コンステレーション、旅客機、地上基地局、船舶がそれぞれ宇宙、航空、船舶として機能する、ユビキタスな海上通信を支援するための宇宙地上統合ネットワーク(SAGIN)を提案する。
論文 参考訳(メタデータ) (2021-10-28T14:12:10Z) - Variational Structured Attention Networks for Deep Visual Representation
Learning [49.80498066480928]
空間的注意マップとチャネル的注意の両方を原則的に共同学習するための統合的深層フレームワークを提案する。
具体的には,確率的表現学習フレームワークに注目度の推定と相互作用を統合する。
ニューラルネットワーク内で推論ルールを実装し,確率パラメータとcnnフロントエンドパラメータのエンドツーエンド学習を可能にする。
論文 参考訳(メタデータ) (2021-03-05T07:37:24Z) - Active Visual Information Gathering for Vision-Language Navigation [115.40768457718325]
視覚言語ナビゲーション(VLN)は、エージェントがフォトリアリスティックな環境の中でナビゲーションの指示を行うためのタスクである。
VLNの重要な課題の1つは、曖昧な指示による不確実性を緩和し、環境の観察を不十分にすることで、堅牢なナビゲーションを行う方法である。
この研究は、人間のナビゲーション行動からインスピレーションを得て、よりインテリジェントなVLNポリシーのためのアクティブな情報収集能力を持つエージェントを提供する。
論文 参考訳(メタデータ) (2020-07-15T23:54:20Z) - Unsupervised Distribution Learning for Lunar Surface Anomaly Detection [0.0]
月面リモートセンシングデータに,現代のデータ駆動機械学習技術がうまく適用可能であることを示す。
特に、アポロ15号の着陸モジュールを見つけるために、教師なし分布学習ニューラルネットワークモデルを訓練する。
論文 参考訳(メタデータ) (2020-01-14T05:38:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。