論文の概要: Ancient but Digitized: Developing Handwritten Optical Character Recognition for East Syriac Script Through Creating KHAMIS Dataset
- arxiv url: http://arxiv.org/abs/2408.13631v1
- Date: Sat, 24 Aug 2024 17:17:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:39:37.580040
- Title: Ancient but Digitized: Developing Handwritten Optical Character Recognition for East Syriac Script Through Creating KHAMIS Dataset
- Title(参考訳): 古代のデジタル化:KHAMISデータセット作成による東シリア文字の文字認識
- Authors: Ameer Majeed, Hossein Hassani,
- Abstract要約: 本稿では,手書きシリア語テキストに基づく光学文字認識(OCR)モデルの開発を目的とした研究プロジェクトについて報告する。
データセットKHAMISは、東シリア文字で手書きの文からなる。
データは、KHAMISを作成するために言語で読み書きできるボランティアから収集された。
手書きのOCRモデルは、トレーニングセットと評価セットの両方で1.097-1.610%と8.963-10.490%の文字誤り率を達成することができた。
- 参考スコア(独自算出の注目度): 1.174020933567308
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many languages have vast amounts of handwritten texts, such as ancient scripts about folktale stories and historical narratives or contemporary documents and letters. Digitization of those texts has various applications, such as daily tasks, cultural studies, and historical research. Syriac is an ancient, endangered, and low-resourced language that has not received the attention it requires and deserves. This paper reports on a research project aimed at developing a optical character recognition (OCR) model based on the handwritten Syriac texts as a starting point to build more digital services for this endangered language. A dataset was created, KHAMIS (inspired by the East Syriac poet, Khamis bar Qardahe), which consists of handwritten sentences in the East Syriac script. We used it to fine-tune the Tesseract-OCR engine's pretrained Syriac model on handwritten data. The data was collected from volunteers capable of reading and writing in the language to create KHAMIS. KHAMIS currently consists of 624 handwritten Syriac sentences collected from 31 university students and one professor, and it will be partially available online and the whole dataset available in the near future for development and research purposes. As a result, the handwritten OCR model was able to achieve a character error rate of 1.097-1.610% and 8.963-10.490% on both training and evaluation sets, respectively, and both a character error rate of 18.89-19.71% and a word error rate of 62.83-65.42% when evaluated on the test set, which is twice as better than the default Syriac model of Tesseract.
- Abstract(参考訳): 多くの言語には、民俗物語や歴史物語、現代の文書や手紙など、膨大な量の手書きのテキストがある。
これらのテキストのデジタル化は、日々のタスク、文化研究、歴史研究など、様々な応用がある。
シリア語は古代の、絶滅危惧種で、低資源の言語であり、それに必要な注意を引いていない。
本稿では,この絶滅危惧言語のためのより多くのデジタルサービスを構築するための出発点として,手書きシリア語テキストに基づく光学文字認識(OCR)モデルの開発を目的とした研究プロジェクトについて報告する。
データセットKHAMIS(東シリアの詩人であるKhamis bar Qardaheに触発された)は、東シリアの文字で書かれた文章からなる。
我々は手書きデータに基づいてテッセラクト-OCRエンジンの事前訓練されたシリアクモデルを微調整した。
データは、KHAMISを作成するために言語で読み書きできるボランティアから収集された。
KHAMISは現在、31人の大学生と1人の教授から集められた624件のシリア人による手書きの文章で構成されている。
その結果、手書きのOCRモデルは、トレーニングセットと評価セットの両方で、それぞれ1.097-1.610%と8.963-10.490%の文字エラー率を達成でき、テストセットでの評価では18.89-19.71%と単語エラー率62.83-65.42%の文字エラー率を達成できた。
関連論文リスト
- Bukva: Russian Sign Language Alphabet [75.42794328290088]
本稿では,ロシア手話(RSL)ダクティルとしても知られる,ロシア語の指先文字の認識について検討する。
ダクティル (Dactyl) は手の動きが書かれた言語の個々の文字を表す手話の構成要素である。
当社は、RSLダクチル認識のための、最初の本格的なオープンソースビデオデータセットであるBakvaを提供している。
論文 参考訳(メタデータ) (2024-10-11T09:59:48Z) - Qalam : A Multimodal LLM for Arabic Optical Character and Handwriting Recognition [18.280762424107408]
本研究はアラビア語 OCR と HWR 向けに設計された新しい基礎モデルである Qalam を紹介する。
提案手法は,HWRタスクが0.80%,OCRタスクが1.18%のワード誤り率(WER)を達成し,既存の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-07-18T14:31:09Z) - Making Old Kurdish Publications Processable by Augmenting Available Optical Character Recognition Engines [1.174020933567308]
クルド人図書館には、クルディスタンに印刷装置が持ち込まれた初期の時代に印刷された多くの歴史出版物がある。
現在の光学文字認識(OCR)システムでは、多くの問題があるため、歴史的文書からテキストを抽出できない。
本研究では,GoogleによるオープンソースのOCRフレームワークであるTesseractバージョン5.0を採用し,様々な言語用テキストの抽出に利用した。
論文 参考訳(メタデータ) (2024-04-09T08:08:03Z) - Retrieval is Accurate Generation [99.24267226311157]
本稿では,支援文書の集合からコンテキスト認識句を選択する新しい手法を提案する。
本モデルでは,検索対象のベースラインの中で,最高の性能と低レイテンシを実現する。
論文 参考訳(メタデータ) (2024-02-27T14:16:19Z) - New Results for the Text Recognition of Arabic Maghrib{\=i} Manuscripts
-- Managing an Under-resourced Script [0.0]
アラビア文字Maghrib=iスクリプト専用のHTRモデル開発および微調整のための新しいモードオペラーディを導入・評価する。
いくつかの最先端のHTRモデルの比較は、アラビア語に特化した単語ベースのニューラルアプローチの関連性を示している。
その結果、アラビア文字処理のための新しい視点が開かれ、より一般的には、貧弱な言語処理のためのものである。
論文 参考訳(メタデータ) (2022-11-29T12:21:41Z) - Kurdish Handwritten Character Recognition using Deep Learning Techniques [26.23274417985375]
本稿では、深層学習技術を用いてクルド語アルファベットの文字を認識可能なモデルの設計と開発を試みる。
4000万枚以上の画像を含む、手書きのクルド文字のための包括的なデータセットが作成された。
結果,精度は96%,トレーニング精度は97%であった。
論文 参考訳(メタデータ) (2022-10-18T16:48:28Z) - PART: Pre-trained Authorship Representation Transformer [64.78260098263489]
文書を書く著者は、語彙、レジストリ、句読点、ミススペル、絵文字の使用など、テキスト内での識別情報をインプリントする。
以前の作品では、手作りのフィーチャや分類タスクを使用して著者モデルをトレーニングし、ドメイン外の著者に対するパフォーマンスの低下につながった。
セマンティクスの代わりにtextbfauthorship の埋め込みを学習するために、対照的に訓練されたモデルを提案する。
論文 参考訳(メタデータ) (2022-09-30T11:08:39Z) - Comprehensive Benchmark Datasets for Amharic Scene Text Detection and
Recognition [56.048783994698425]
Ethiopic/Amharicスクリプトはアフリカ最古の書記システムの一つで、東アフリカで少なくとも23の言語に対応している。
アムハラ語の表記体系である Abugida は282音節、15句の句読点、20の数字を持つ。
HUST-ART, HUST-AST, ABE, Tana という,自然界におけるアムハラ文字の検出と認識のための総合的な公開データセットを提示した。
論文 参考訳(メタデータ) (2022-03-23T03:19:35Z) - Lexically Aware Semi-Supervised Learning for OCR Post-Correction [90.54336622024299]
世界中の多くの言語における既存の言語データの多くは、非デジタル化された書籍や文書に閉じ込められている。
従来の研究は、あまり良くない言語を認識するためのニューラル・ポスト・コレクション法の有用性を実証してきた。
そこで本研究では,生画像を利用した半教師付き学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-04T04:39:02Z) - Classification of Handwritten Names of Cities and Handwritten Text
Recognition using Various Deep Learning Models [0.0]
我々は,手書き認識モデルの開発における近年の様々なアプローチと成果について述べる。
最初のモデルは、特徴抽出にディープ畳み込みニューラルネットワーク(CNN)、単語分類に完全に接続された多層パーセプトロンニューラルネットワーク(MLP)を使用する。
2つ目のモデルはSimpleHTRと呼ばれ、CNNとリカレントニューラルネットワーク(RNN)レイヤを使用して画像から情報を取り出す。
論文 参考訳(メタデータ) (2021-02-09T13:34:16Z) - A Large-Scale Chinese Short-Text Conversation Dataset [77.55813366932313]
大規模な中国語会話データセットLCCCについて,基本バージョン(680万対話),大バージョン(1120万対話)について述べる。
データセットの品質は、厳格なデータクリーニングパイプラインによって保証されます。
また,LCCC-baseとLCCC-largeで訓練された事前学習対話モデルもリリースした。
論文 参考訳(メタデータ) (2020-08-10T08:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。