論文の概要: Submodular Maximization Approaches for Equitable Client Selection in Federated Learning
- arxiv url: http://arxiv.org/abs/2408.13683v1
- Date: Sat, 24 Aug 2024 22:40:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 18:29:37.111659
- Title: Submodular Maximization Approaches for Equitable Client Selection in Federated Learning
- Title(参考訳): フェデレート学習における等価クライアント選択のための部分モジュラ最大化手法
- Authors: Andrés Catalino Castillo Jiménez, Ege C. Kaya, Lintao Ye, Abolfazl Hashemi,
- Abstract要約: 従来の学習フレームワークでは、トレーニングのためのクライアント選択は、通常、各イテレーションでクライアントのサブセットをランダムにサンプリングする。
本稿では,ランダムクライアント選択の限界に対処するために,SUBTRUNCとUNIONFLという2つの新しい手法を提案する。
- 参考スコア(独自算出の注目度): 4.167345675621377
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a conventional Federated Learning framework, client selection for training typically involves the random sampling of a subset of clients in each iteration. However, this random selection often leads to disparate performance among clients, raising concerns regarding fairness, particularly in applications where equitable outcomes are crucial, such as in medical or financial machine learning tasks. This disparity typically becomes more pronounced with the advent of performance-centric client sampling techniques. This paper introduces two novel methods, namely SUBTRUNC and UNIONFL, designed to address the limitations of random client selection. Both approaches utilize submodular function maximization to achieve more balanced models. By modifying the facility location problem, they aim to mitigate the fairness concerns associated with random selection. SUBTRUNC leverages client loss information to diversify solutions, while UNIONFL relies on historical client selection data to ensure a more equitable performance of the final model. Moreover, these algorithms are accompanied by robust theoretical guarantees regarding convergence under reasonable assumptions. The efficacy of these methods is demonstrated through extensive evaluations across heterogeneous scenarios, revealing significant improvements in fairness as measured by a client dissimilarity metric.
- Abstract(参考訳): 従来のフェデレートラーニングフレームワークでは、トレーニングのためのクライアント選択は、通常、イテレーション毎にクライアントのサブセットをランダムにサンプリングする。
しかし、このランダムな選択は、しばしばクライアント間で異なるパフォーマンスをもたらし、公正性、特に医療や金融の機械学習タスクなど、公平な結果が不可欠であるアプリケーションにおいて、関心を喚起する。
この格差は通常、パフォーマンス中心のクライアントサンプリング技術の出現によってより顕著になる。
本稿では,ランダムクライアント選択の限界に対処するために,SUBTRUNCとUNIONFLという2つの新しい手法を提案する。
どちらのアプローチも、よりバランスの取れたモデルを達成するために、部分モジュラ函数の最大化を利用する。
施設の位置問題を修正することにより、ランダムな選択に伴う公平さの懸念を軽減することを目指している。
SUBTRUNCは、クライアント損失情報を利用してソリューションを多様化し、UNIONFLは、最終モデルのより公平なパフォーマンスを保証するために、過去のクライアント選択データに依存する。
さらに、これらのアルゴリズムは、合理的な仮定の下で収束に関する堅牢な理論的保証を伴っている。
これらの手法の有効性は、不均一なシナリオにわたる広範囲な評価を通じて実証され、クライアントの異性度測定値によって測定された公正性の顕著な改善が示された。
関連論文リスト
- Emulating Full Client Participation: A Long-Term Client Selection Strategy for Federated Learning [48.94952630292219]
本稿では,クライアントの完全参加によって達成されるパフォーマンスをエミュレートする新しいクライアント選択戦略を提案する。
1ラウンドで、クライアントサブセットとフルクライアントセット間の勾配空間推定誤差を最小化し、クライアントを選択する。
複数ラウンド選択において、類似したデータ分布を持つクライアントが選択される頻度に類似することを保証する、新しい個性制約を導入する。
論文 参考訳(メタデータ) (2024-05-22T12:27:24Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
本稿では,ガウス混合モデル(GMM)を用いたPFL(Personalized Federated Learning)を提案する。
FedGMMはオーバーヘッドを最小限に抑え、新しいクライアントに適応する付加的なアドバンテージを持ち、不確実な定量化を可能にします。
PFL分類と新しいサンプル検出の両方において, 合成データセットとベンチマークデータセットの実証評価により, 提案手法の優れた性能を示した。
論文 参考訳(メタデータ) (2023-05-01T20:04:46Z) - Client Selection in Federated Learning: Principles, Challenges, and
Opportunities [15.33636272844544]
Federated Learning(FL)は、機械学習(ML)モデルをトレーニングするためのプライバシー保護パラダイムである。
典型的なFLシナリオでは、クライアントはデータ分散とハードウェア構成の点で大きな異質性を示す。
様々なクライアント選択アルゴリズムが開発され、性能改善が期待できる。
論文 参考訳(メタデータ) (2022-11-03T01:51:14Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
本研究では,ランダムに選択したクライアントからのグループデータのクラス不均衡が,性能の大幅な低下につながることを示す。
我々のキーとなる観測に基づいて、我々は効率的なクライアントサンプリング機構、すなわちフェデレートクラスバランスサンプリング(Fed-CBS)を設計する。
特に、クラス不均衡の尺度を提案し、その後、同型暗号化を用いてプライバシー保護方式でこの尺度を導出する。
論文 参考訳(メタデータ) (2022-09-30T05:42:56Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
フェデレーション学習は、プライバシと通信の制限を尊重しながら、クライアントの大規模なネットワークに分散されたサンプルからのトレーニングモデルを可能にする。
これら2つのハードルを同時に処理する理論的なスピードアップを保証する新しいアルゴリズム手法を開発した。
提案手法は,すべてのクライアントのデータを用いてグローバルな共通表現を見つけ,各クライアントに対してパーソナライズされたソリューションにつながるパラメータの集合を学習するために,表現学習理論からのアイデアに依存している。
論文 参考訳(メタデータ) (2022-06-05T01:14:46Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
連合学習は、生データをリークすることなく、複数の組織のデータを使用してグローバルモデルをトレーニングするための有望なアプローチとして登場した。
上記の2つの課題を同時に解決するための一般的な枠組みを提案する。
我々は、ロバストネス解析、収束解析、一般化能力を含む包括的理論的解析を提供する。
論文 参考訳(メタデータ) (2022-04-16T08:08:29Z) - On the Convergence of Clustered Federated Learning [57.934295064030636]
統合学習システムでは、例えばモバイルデバイスや組織参加者といったクライアントは通常、個人の好みや行動パターンが異なる。
本稿では,クライアントグループと各クライアントを統一最適化フレームワークで活用する,新しい重み付きクライアントベースクラスタリングFLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-02-13T02:39:19Z) - Stochastic Client Selection for Federated Learning with Volatile Clients [41.591655430723186]
Federated Learning(FL)は、プライバシ保護機械学習パラダイムである。
同期FLトレーニングの各ラウンドでは、参加できるクライアントはごくわずかである。
本稿では,この問題を解決するためのクライアント選択方式であるE3CSを提案する。
論文 参考訳(メタデータ) (2020-11-17T16:35:24Z) - Client Selection in Federated Learning: Convergence Analysis and
Power-of-Choice Selection Strategies [29.127689561987964]
フェデレートラーニングにより、多数のリソース制限されたクライアントノードが、データ共有なしで協調的にモデルをトレーニングできる。
局所的損失の高いクライアントに対するクライアント選択の偏りは、より高速なエラー収束を実現することを示す。
通信および計算効率の高いクライアント選択フレームワークであるPower-of-Choiceを提案する。
論文 参考訳(メタデータ) (2020-10-03T01:04:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。