PhysPart: Physically Plausible Part Completion for Interactable Objects
- URL: http://arxiv.org/abs/2408.13724v2
- Date: Wed, 28 Aug 2024 18:09:49 GMT
- Title: PhysPart: Physically Plausible Part Completion for Interactable Objects
- Authors: Rundong Luo, Haoran Geng, Congyue Deng, Puhao Li, Zan Wang, Baoxiong Jia, Leonidas Guibas, Siyuan Huang,
- Abstract summary: We tackle the problem of physically plausible part completion for interactable objects.
We propose a diffusion-based part generation model that utilizes geometric conditioning.
We also demonstrate our applications in 3D printing, robot manipulation, and sequential part generation.
- Score: 28.91080122885566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interactable objects are ubiquitous in our daily lives. Recent advances in 3D generative models make it possible to automate the modeling of these objects, benefiting a range of applications from 3D printing to the creation of robot simulation environments. However, while significant progress has been made in modeling 3D shapes and appearances, modeling object physics, particularly for interactable objects, remains challenging due to the physical constraints imposed by inter-part motions. In this paper, we tackle the problem of physically plausible part completion for interactable objects, aiming to generate 3D parts that not only fit precisely into the object but also allow smooth part motions. To this end, we propose a diffusion-based part generation model that utilizes geometric conditioning through classifier-free guidance and formulates physical constraints as a set of stability and mobility losses to guide the sampling process. Additionally, we demonstrate the generation of dependent parts, paving the way toward sequential part generation for objects with complex part-whole hierarchies. Experimentally, we introduce a new metric for measuring physical plausibility based on motion success rates. Our model outperforms existing baselines over shape and physical metrics, especially those that do not adequately model physical constraints. We also demonstrate our applications in 3D printing, robot manipulation, and sequential part generation, showing our strength in realistic tasks with the demand for high physical plausibility.
Related papers
- Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
We propose textbfPhysics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model.
Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model.
Experiments demonstrate the effectiveness of our method with both elastic and plastic materials.
arXiv Detail & Related papers (2024-06-06T17:59:47Z) - Physically Compatible 3D Object Modeling from a Single Image [109.98124149566927]
We present a framework that transforms single images into 3D physical objects.
Our framework embeds physical compatibility into the reconstruction process.
It consistently enhances the physical realism of 3D models over existing methods.
arXiv Detail & Related papers (2024-05-30T21:59:29Z) - Atlas3D: Physically Constrained Self-Supporting Text-to-3D for Simulation and Fabrication [50.541882834405946]
We introduce Atlas3D, an automatic and easy-to-implement text-to-3D method.
Our approach combines a novel differentiable simulation-based loss function with physically inspired regularization.
We verify Atlas3D's efficacy through extensive generation tasks and validate the resulting 3D models in both simulated and real-world environments.
arXiv Detail & Related papers (2024-05-28T18:33:18Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - Fixing Malfunctional Objects With Learned Physical Simulation and
Functional Prediction [158.74130075865835]
Given a malfunctional 3D object, humans can perform mental simulations to reason about its functionality and figure out how to fix it.
To mimic humans' mental simulation process, we present FixNet, a novel framework that seamlessly incorporates perception and physical dynamics.
arXiv Detail & Related papers (2022-05-05T17:59:36Z) - SPAMs: Structured Implicit Parametric Models [30.19414242608965]
We learn Structured-implicit PArametric Models (SPAMs) as a deformable object representation that structurally decomposes non-rigid object motion into part-based disentangled representations of shape and pose.
Experiments demonstrate that our part-aware shape and pose understanding lead to state-of-the-art performance in reconstruction and tracking of depth sequences of complex deforming object motion.
arXiv Detail & Related papers (2022-01-20T12:33:46Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.