CAMH: Advancing Model Hijacking Attack in Machine Learning
- URL: http://arxiv.org/abs/2408.13741v1
- Date: Sun, 25 Aug 2024 07:03:01 GMT
- Title: CAMH: Advancing Model Hijacking Attack in Machine Learning
- Authors: Xing He, Jiahao Chen, Yuwen Pu, Qingming Li, Chunyi Zhou, Yingcai Wu, Jinbao Li, Shouling Ji,
- Abstract summary: Category-Agnostic Model Hijacking (CAMH) is a novel model hijacking attack method.
It addresses the challenges of class number mismatch, data distribution divergence, and performance balance between the original and hijacking tasks.
We demonstrate its potent attack effectiveness while ensuring minimal degradation in the performance of the original task.
- Score: 44.58778557522968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the burgeoning domain of machine learning, the reliance on third-party services for model training and the adoption of pre-trained models have surged. However, this reliance introduces vulnerabilities to model hijacking attacks, where adversaries manipulate models to perform unintended tasks, leading to significant security and ethical concerns, like turning an ordinary image classifier into a tool for detecting faces in pornographic content, all without the model owner's knowledge. This paper introduces Category-Agnostic Model Hijacking (CAMH), a novel model hijacking attack method capable of addressing the challenges of class number mismatch, data distribution divergence, and performance balance between the original and hijacking tasks. CAMH incorporates synchronized training layers, random noise optimization, and a dual-loop optimization approach to ensure minimal impact on the original task's performance while effectively executing the hijacking task. We evaluate CAMH across multiple benchmark datasets and network architectures, demonstrating its potent attack effectiveness while ensuring minimal degradation in the performance of the original task.
Related papers
- Model Hijacking Attack in Federated Learning [19.304332176437363]
HijackFL is the first-of-its-kind hijacking attack against the global model in federated learning.
It aims to force the global model to perform a different task from its original task without the server or benign client noticing.
We conduct extensive experiments on four benchmark datasets and three popular models.
arXiv Detail & Related papers (2024-08-04T20:02:07Z) - OMG-ATTACK: Self-Supervised On-Manifold Generation of Transferable
Evasion Attacks [17.584752814352502]
Evasion Attacks (EA) are used to test the robustness of trained neural networks by distorting input data.
We introduce a self-supervised, computationally economical method for generating adversarial examples.
Our experiments consistently demonstrate the method is effective across various models, unseen data categories, and even defended models.
arXiv Detail & Related papers (2023-10-05T17:34:47Z) - Ownership Protection of Generative Adversarial Networks [9.355840335132124]
Generative adversarial networks (GANs) have shown remarkable success in image synthesis.
It is critical to technically protect the intellectual property of GANs.
We propose a new ownership protection method based on the common characteristics of a target model and its stolen models.
arXiv Detail & Related papers (2023-06-08T14:31:58Z) - A Generative Framework for Low-Cost Result Validation of Machine Learning-as-a-Service Inference [4.478182379059458]
Fides is a novel framework for real-time integrity validation of ML-as-a-Service (ML) inference.
Fides features a client-side attack detection model that uses statistical analysis and divergence measurements to identify, with a high likelihood, if the service model is under attack.
We devised a generative adversarial network framework for training the attack detection and re-classification models.
arXiv Detail & Related papers (2023-03-31T19:17:30Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
We present an algorithm for training self-destructing models leveraging techniques from meta-learning and adversarial learning.
In a small-scale experiment, we show MLAC can largely prevent a BERT-style model from being re-purposed to perform gender identification.
arXiv Detail & Related papers (2022-11-27T21:43:45Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Practical No-box Adversarial Attacks with Training-free Hybrid Image
Transformation [123.33816363589506]
We show the existence of a textbftraining-free adversarial perturbation under the no-box threat model.
Motivated by our observation that high-frequency component (HFC) domains in low-level features, we attack an image mainly by manipulating its frequency components.
Our method is even competitive to mainstream transfer-based black-box attacks.
arXiv Detail & Related papers (2022-03-09T09:51:00Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
Supervised Machine Learning (ML) to enhance Intrusion Detection Systems has been the subject of significant research.
retraining the models in-situ renders the network susceptible to attacks owing to the time-window required to acquire a sufficient volume of data.
Here, a complementary approach referred to as 'One-Shot Learning', whereby a limited number of examples of a new attack-class is used to identify a new attack-class.
A Siamese Network is trained to differentiate between classes based on pairs similarities, rather than features, allowing to identify new and previously unseen attacks.
arXiv Detail & Related papers (2020-06-27T11:40:01Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.